Проект Сиб.фм «Будущее российской науки» продолжает знакомить с самыми любопытными исследованиями молодых новосибирских ученых. Наш следующий сюжет – о том, для чего еще, кроме рисования, может пригодиться графитовый карандашный стержень, какой материал из графита догадались сделать ученые, и как с помощью этого материала создадут электронику будущего.

Источник: Медиахолдинг Сибфм групп

Надежда Небогатикова, фото Сиб.фм

Современные электронные устройства стремятся к уменьшению размеров активных элементов. Это связано не только с желанием сделать максимально компактные и надежные приборы, но и чтобы эти приборы были более скоростными и тратили меньше энергии. Поэтому нанотехнологии – когда речь идет о масштабах, равных миллионной части миллиметра — развиваются все активнее. А для этого нужны материалы, которые могли бы «работать» в таких масштабах. Те, которые используются в электронике сегодня, уже не подходят.

Сейчас ученые изучают материал, в свойствах которого долгое время сомневались. Но в 2010 году двоим исследователям удалось убедить научный мир в возможности использования этого материала, за что они даже получили Нобелевскую премию. С тех пор интерес к этому материалу постоянно растет, ученые по всему миру ищут ему применение. Речь идет о графене. Изучают его возможности и в новосибирском Академгородке.

«Графен сам по себе – это достаточно тонкий слой атомов толщиной 0,35 нанометра. Если перевести на знакомые величины, то можно сказать так: человеческий волос укладывается в один метр примерно столько же раз, сколько раз нанометр в толщину волоса. Это примерные масштабы. И получается, что нам нужно работать с очень тонкими пленками», — рассказывает старший научный сотрудник лаборатории физики и технологии трехмерных наноструктур Института физики полупроводников СО РАН кандидат физико-математических наук Надежда Небогатикова.

По ее словам, графен — вполне природный материал. Когда мы пишем обычным простым карандашом, след, который остается от графита – это отщепившиеся слои графена, которых в стержне очень много. Но они слишком толстые, там десятки, сотни микрон, поэтому они не обладают такими свойствами, как тончайший, состоящий всего из одного слоя атомов графен, который изучают ученые.

Почему графен привлек внимание исследователей? Потому что он обладает хорошей электропроводностью, у него высокая подвижность носителей заряда, он тонкий, гибкий и достаточно стабильный в определенном диапазоне температур. И это важно, потому что при создании новых, совсем миниатюрных устройств, прежние материалы могут не работать из-за существенного различия свойств у пленок толщиной в несколько нанометров и несколько десятков нанометров. А графен – это тот материал, который сразу на наномасштабах работает хорошо.

Однако долгое время не могли поверить, что такая тонкая пленка, которую представляет собой графен, пригодна для работы. Считалось, что она очень нестабильная, при работе с ней она свернется в комочек, сгорит в атмосфере, испортится и так далее. Но теперь, когда доказано, что ничего такого не произойдет, ученые разрабатывают способы ее использовать.

«Фокус в том, — объясняет Надежда Александровна, — что если мы хотим на гибких проводящих пленках делать какую-то электронику, нам нужно научиться их изолировать. Например, мы включаем провода в розетку, берясь за непроводящий ток участок. С наноэлектроникой примерно так же. И у нас был интерес научиться локально модифицировать проводящие области и непроводящие, чтобы создавать новые структуры и управлять их характеристиками»…

Продолжение  ―  на сайте sib.fm

Видео: Сиб.фм