STAFF MEMBERS

Ivanov Artem Ilyich

Date of Birth: 31.01.1991

Email: Этот адрес электронной почты защищён от спам-ботов. У вас должен быть включен JavaScript для просмотра.

Elibrary: SPIN: 3524-5780

WoS ResearcherID: https://publons.com/researcher/L-5868-2017/

Scopus AuthorID: https://www.scopus.com/authid/detail.uri?authorId=57190965449

ORCID: https://orcid.org/0000-0001-8977-3832

Education:

2009-2015, Novosibirsk State Techniсal University (210600 – bachelor of field "Nanotechnology", 28.04.01 Master Nanotechnology and microsystem technology).
2015-2019, postgraduate student of A.V. Rzhanov Institute of Semiconductor Physics, Russian Academy of Sciences, Russia (03.06.01 Physics and Astronomy, "Researcher. Research teacher").
2022, Candidate of sciences (Ph. D.) in Сondensed matter physics. Thesis "Flexible materials and structures based on fluorinated graphene for memristors."

Work Experience:

10.2011-05.2013 – technician of A.V. Rzhanov Institute of Semiconductor Physics, Russian Academy of Sciences, Novosibirsk, Russia.
09.2013-05.2017 – engineer of A.V. Rzhanov Institute of Semiconductor Physics, Russian Academy of Sciences, Novosibirsk, Russia.
05.2017-12.2018 – research engineer of A.V. Rzhanov Institute of Semiconductor Physics, Russian Academy of Sciences, Novosibirsk, Russia.
12.2018 - present – junior researcher of A.V. Rzhanov Institute of Semiconductor Physics, Russian Academy of Sciences, Novosibirsk, Russia

Current Research and Professional Interests:

Currently, Artem studies the properties of functionalized graphene-based materials, including fluorinated graphene, layered and composite films of these materials, and the resistive switching effect for the use in printed technologies and flexible electronics. He has published 11 papers in reputed journals and took part in 17 international and Russian conferences. The sum of the times cited is about 32, h-index is equal to 4.

The main results (2017-2021)

New composite materials and memristor structures based on fluorinated graphene, which demonstrate stable resistive switching, have been developed and studied. The most interesting results were obtained for the following types of materials and structures: (a) two-layer structures of fluorinated graphene with graphene quantum dots on a polyvinyl alcohol film, (b) films of a composite material based on fluorinated graphene with V2O5 nanoparticles, c) core-shell nanoparticles (core - V2O5, shell - fluorinated graphene) as the basis for nanomemristor.

  1. For the first time, it is shown that a composite material based on V2O5 nanoparticles encapsulated by fluorinated graphene, memristors with bipolar switching, and a record-high change in conductivity from the closed state to the open state by 10^9 times are formed. The effect magnitude depends on the composite particle size, the degree of V2O5 nanoparticles hydrogenation, and the area of the structures. It has been established that the optimal material parameters are the film thickness of 20-50 nm, and the encapsulated particles dimensions in the film are 5-20 nm. The switching voltage of the structures is 1.5-2 V.

  2. It was found that a voltage pulse with a duration of about 30 ns and an amplitude of 2.5 V leads to switching of the structure from a composite material -fluorinated graphene with V2O5 nanoparticles to a low-resistance state. The created crossbar structures demonstrate up to 2x106 switching cycles without changing the ratio of currents in low- and high-resistance states.

  3. Core-shell nanoparticles, consisting of V2O5 ~ 5-7 nm in size, encapsulated by fluorinated graphene ~ 2 nm, demonstrate the effect of resistive switching up to 5 orders of magnitude. The number of pulsed switchings reaches 104. These results show the possibility of using nanoparticles to create nanometer-sized memory elements.

  4. A qualitative model of the effect of resistive switching in memristor structures based on V2O5 crystalline hydrate nanoparticles with two fluorinated graphene barriers connected in series is proposed. When an external voltage is applied, a barrier of fluorinated graphene first opens, then the dipoles of the H + - OH- structure are reoriented, and bipolar switching is observed.

  5. It is shown that the magnitude of the resistive switching effect increases from 1 to 4-5 orders of magnitude when applying a film of fluorinated graphene with a thickness of 2-4 nm on the surface of a polyvinyl alcohol film.

  6. For the first time it has been established that if the polyvinyl alcohol film thickness in two-layer structures with fluorinated graphene (while maintaining the thickness of the FG film) is less than 100 nm, then bipolar resistive switching is observed, at a thickness of more than 300 nm - unipolar resistive switching, which is associated with the depth of location interface states less than 100 nm.

  7. It is shown that fully printed test memristor structures based on fluorinated graphene with polyvinyl alcohol on the surface of a flexible substrate retain their characteristics when deformed up to 6.5% (bending radius 1.9 mm) and restore them after removal of more significant mechanical stresses.

  8. A resistive switching mechanism in structures based on a thin film of partially fluorinated graphene covering the surface of a polyvinyl alcohol film is proposed. Electrically active states at the interface between polyvinyl alcohol and fluorinated graphene are activated under the action of an electric field of one polarity and become neutral when the polarity is reversed. Together with graphene regions, activated electrically active centers at the interface form paths for the flow of electric current in the open state.

  9. The characteristic density of electrically active centers involved in conduction in the open state for structures of fluorinated graphene on polyvinyl alcohol (3.8x1010 cm-2) is determined, and direct proportional dependence of the effect of resistive switching on the density of electrically active centers is shown. The characteristic activation energies of carriers from these centers were ~0.05 eV.

  10. It has been established that to stabilize the parameters of a graphene oxide film 100-120 nm thick: it is enough to cover it with fluorinated graphene 2-3 nm thick (several monolayers). This nanofilm prevents a decrease in the number of oxygen-containing groups from the active layers of structures. There is an increase in the temperature stability (chemical composition and insulating properties) of graphene oxide and expansion of the prospects for its use.

  11. It is shown that in graphene oxide protected by fluorinated graphene, the number of resistive switching increases from several units, for graphene oxide, to several hundred, and the switching effect becomes more stable since the rate of degradation (recovery) of graphene oxide decreases.

Selected Publications:

  1. Two-layer and composite films based on oxidized and fluorinated graphene [Электронный ресурс] / A.I. Ivanov, N.A. Nebogatikova, I.A. Kotin, I.A. Antonova // Physical Chemistry Chemical Physics. – 2017. – Vol.19. – Pp. 19010-19020. – Reference: http://pubs.rsc.org/-/content/articlelanding/2017/cp/c7cp03609d/unauth#!divAbstract. [Q1]

  2. Graphene/Fluorinated Graphene Systems for a Wide Spectrum of Electronics Application / I.V. Antonova, I.K. Kotin, I.I. Kurkina, A.I. Ivanov, E.A. Yakimchuk, N.A. Nebogatikova, V.I. Vdovin, A.K. Gutakovskii, R.A. Soots // Journal of Material Science & Engineering. – 2017. – Vol. 6, № 379. – P. 2169-0022.1000379.

  3. Mechanism of resistive switching in films based on partially fluorinated graphene [Электронный ресурс] / A.I. Ivanov, N.A. Nebogatikova, I.I. Kurkina, I.V. Antonova // Semiconductors. – 2017. – Vol. 51. – № 10. – Pp. 1306-1312. – Reference: http://journals.ioffe.ru/articles/viewPDF/45013.

  4. Fluorinated graphene suspension for flexible and printed electronics: Flakes, 2D films, and heterostructures / I.V. Antonova, I.I. Kurkina, A.K. Gutakovskii, I.A. Kotin, A.I. Ivanov, N.A. Nebogatikova, R.A. Soots, S.A. Smagulova // Materials & Design. – 2019. – Vol 164. – P. 107526. – Reference: https://www.sciencedirect.com/science/article/pii/S0264127518308694. [Q1]

  5. Resistive switching effects in fluorinated graphene films with graphene quantum dots enhanced by polyvinyl alcohol / A.I. Ivanov, N.A. Nebogatikova, I.A. Kotin, S.A. Smagulova, I.V. Antonova // Nanotechnology. – 2019. – Vol. 30. – №25. – P. 255701. – Reference: https://iopscience.iop.org/article/10.1088/1361-6528/ab0cb3/meta. [Q1]
  6. Resistive Switching Effect with ON/OFF current relation up to 109 in 2D Printed Composite Films of Fluorinated Graphene with V2O5 Nanoparticles / A.I. Ivanov, A.K. Gutakovskii, I.A. Kotin, R.A. Soots, I.V. Antonova / Advanced Electronic Materials . – 2019. – Vol. 5. – № 10. – P. 1900310. [Q1]

  7. Flexibility of fluorinated graphene-based materials / Antonova I. V., Nebogatikova N. A., Zerrouki N., Kurkina I. I., Ivanov A. I. // Materials. – 2020. – Vol 13. – №. 5. – P. 1032. – Reference: https://doi.org/10.3390/ma13051032.

  8. Fluorinated graphene nanoparticles with 1–3 nm electrically active graphene quantum dots / Nebogatikova N. A., Antonova I. V., Ivanov A. I., Demin V. A., Kvashnin D. G., Olejniczak A., Gutakovskii A.K., Kornieieva K. A., Renault P. L. J., Skuratov V. A., Chernozatonskii L. A. // Nanotechnology. – 2020. – Vol 31. – №. 29. – P. 295602 . – Reference: https://doi.org/10.1088/1361-6528/ab83b8. [Q1]

  9. Graphene Flakes for Electronic Applications: DC Plasma Jet-Assisted Synthesis. Nanomaterials /Antonova I. V., Shavelkina M. B., Ivanov A. I., Soots R. A., Ivanov P. P., Bocharov A. N. // Nanomaterials. – 2020. – Vol 10. – №. 10. – P. 2050 . – Reference: https://www.mdpi.com/2079-4991/10/10/2050. [Q1]

  10. Graphene/hexagonal boron nitride composite nanoparticles for 2D printing technologies /Antonova, Irina V., Marina B. Shavelkina, Dmitriy A. Poteryaev, Nadezhda A. Nebogatikova, Artem I. Ivanov, Regina A. Soots, Anton K. Gutakovskii et al. // Advanced Engineering Materials. – 2021. doi.org/10.1002/adem.202100917. [Q1]

  11. Resistive switching on individual V2O5 nanoparticles encapsulated in fluorinated graphene films / Ivanov, A. I., Prinz, V. Y., Antonova, I. V., & Gutakovskii, A. K. // Physical Chemistry Chemical Physics. – 2021. – Vol. 23. – №. 36. – Pp. 20434-20443. – Reference: https://pubs.rsc.org/en/content/articlelanding/2021/cp/d1cp02930d/unauth. doi.org/10.1039/D1CP02930D. [Q1]

ОБОРУДОВАНИЕ

В 2020 г. введена в эксплуатацию современная установка атомно-слоевого осаждения металлов, полупроводников и диэлектриков (SI ALD LL, SENTECH, Германия), которая позволяет решить ряд проблем создания новых наноматериалов и наноструктур. Установка атомно-слоевого осаждения позволяет создавать наноразмерные, ультратонкие, конформные пленки с высокой однородностью, проводить широкий спектр процессов атомно-слоевого осаждения, включая осаждение оксидов, нитридов и металлов с помощью термической и плазменной обработки или их комбинации. В состав установки входит система контроля толщины осаждаемых слоев в реальном времени, удаленный источник связанной плазмы с параллельной конструкцией электродов, генератор азота. Установка обеспечивает сверхвысокую однородность толщины формируемых пленок на подложках диаметром до 200 мм. Высокоскоростная (t~ 40 мс) эллипсометрическая система измерения толщины пленок, формируемых в процессе атомно-слоевого осаждения, позволяет полностью автоматизировать процессы формирования многослойных гетеропленок из разных материалов.

КОНТАКТЫ

Руководитель:

к.ф.-м.н. Селезнев Владимир Александрович
Тел. 333-06-99, вн. 1851
e-mail:

Адрес:

630090, Россия, г. Новосибирск, ул. Ак. Ржанова, 2
Лабораторно-технологический корпус ИФП, к. 551

СОТРУДНИКИ

Селезнев Владимир Александрович
зав. лабораторией
тел. 333-06-99, вн. 1851
551 ЛТК
Багочюс Евгений Кястутисович
м.н.с., аспирант
тел. 333-06-99, вн. 1852
552 ЛТК
Бочаров Андрей Александрович
м.н.с., к.ф.-м.н.
тел. 333-06-99, вн. 1852
552 ЛТК
Воронковский Виталий Александрович
м.н.с.
тел. . 333-06-99, вн. 1852
тел. 330-85-91, вн. 1823
552 ЛТК
227 ТК
Иванов Артем Ильич
м.н.с.
тел. 333-06-99, вн. 1852
552 ЛТК
Лысенко Никита Игоревич
м.н.с., аспирант
тел. 333-06-99, вн. 1851
551 ЛТК
Петрушков Михаил Олегович
м.н.с.
тел. 333-19-67, вн. 1606
360 ЛТК
Спирина Анна Александровна
м.н.с., аспирант
тел. 333-14-75, вн. 1431
519 ЛТК
Султанов Денис Борисович
м.н.с.
тел. 333-06-99, вн. 1852
552 ЛТК
Чесницкий Антон Васильевич
м.н.с., к.т.н.
тел. 333-06-99, вн. 1851
551 ЛТК
Тумашев Виталий Сергеевич
м.н.с., аспирант
тел. 333-06-99, вн. 1851
551 ЛТК