События

В понедельник, 2 июня 2025 г., в 15-00
в актовом зале АК состоится Заседание Ученого совета ИФП СО РАН.
В понедельник, 3 марта 2025 г., в 15-00
в актовом зале АК состоится Заседание Ученого совета ИФП СО РАН.
В понедельник, 10 февраля, в 15-00
в актовом зале АК состоится Заседание Ученого совета ИФП СО РАН.

Во вторник, 24 декабря, в 15 часов в конференц-зале Административного корпуса состоятся защиты диссертаций...

В понедельник, 18 ноября, в 15-00
в актовом зале АК состоится Заседание Ученого совета ИФП СО РАН.

12 ноября 2024 года Институт физики полупроводников им. А.В. Ржанова СО РАН проводит традиционный конкурс стипендий для молодых ученых. Начало работы мероприятия — в 9:00, в конференц-зале административного корпуса.

Объявления

ИФП СО РАН объявляет очередной приём в аспирантуру по образовательным программам подготовки научных и научно-педагогических кадров в аспирантуре очной формы обучения.

В среду, 25.06.2025 в 15-00
в конференц-зал Административного корпуса состоится Институтский семинар
Докладчик: Майдэбура Ян Евгеньевич
«Механизмы формирования квантовых точек GaN методом аммиачной молекулярно-лучевой эпитаксии»

В среду, 11 июня 2025 в 17-00
в конференц-зале ТК состоится
семинар лаборатории №3 по публикации: "1.534 мкм электролюминесценция эрбия в плёнках In2O3:Er, ВЧ-магнетронно напылённых на подложку кремния."

Во вторник, 10 июня 2025 в 15-00
в конференц-зале ТК состоится лабораторный семинар
Докладчик: Майдэбура Ян Евгеньевич
"Механизмы формирования квантовых точек GaN методом аммиачной молекулярно-лучевой эпитаксии"

Важное





Российская конференция и школа молодых ученых

«ФОТОНИКА-2025»

8-12 сентября 2025 года


Конкурс на присуждение премий мэрии города Новосибирска в сфере науки и инноваций

Заявки принимают по 28 июля 2025 года
Подробнее

Конкурс молодых ученых 2025 года по присуждению премий имени выдающихся ученых Сибирского отделения РАН

Срок предоставления работ с 16 июня по 31 июля 2025
Подробнее

Другие конкурсы...

Поступление в образовательные организации высшего образования

https://pos.gosuslugi.ru/lkp/polls/477289/

Разработка превосходит испанские аналоги, которые планировалось использовать для телескопа раньше

В Институте физики полупроводников им. А.В. Ржанова СО РАН (ИФП СО РАН) создали фотокатоды на основе соединения цезий-йод — ключевые элементы для «глаз» нового космического телескопа «Спектр-УФ», планируемого к запуску в 2031 году.

Во время проверки эффективности фотокатоды показали квантовый выход на уровне 40%, что в два раза выше базовых проектных параметров, и является рекордным значением для такого типа фотокатодов. Устройства предназначены для улавливания одной из составляющих космического излучения — вакуумного ультрафиолета, что позволит телескопу получать ранее недоступные данные о Вселенной. В частности, проводить поиск биологических маркеров (признака внеземной жизни) в атмосфере экзопланет.


Фотокатоды цезий-йод -ключевая часть электронно-оптических преобразователей для глаз "Спектр-УФ", фото Надежды Дмитриевой


Разработка имеет большое значение не только для реализации национального отечественного космического проекта «Спектр-УФ», но и для мировой науки в целом. С момента запуска «Спектр-УФ» будет выступать преемником телескопа имени Хаббла, во-первых, закрывая его ультрафиолетовую рабочую нишу. Во-вторых, получая совершенно новую информацию, благодаря современному оборудованию и расположению над поверхностью Земли — в 70 раз выше, чем «Хаббл», на 35 000 км. Как минимум до 2041 года, «Спектр-УФ» будет единственным в мире космическим телескопом, собирающим данные в ультрафиолетовом диапазоне.

Головной организацией проекта «Спектр-УФ» является НПО им. С.А. Лавочкина, за оптические элементы и зеркала телескопа отвечает АО «Лыткаринский завод оптического стекла», за разработку электронных блоков — Институт космических исследований РАН, Всероссийский научно-исследовательский институт экспериментальной физики берёт на себя ответственность за комплектацию блока спектрографов и элементов блока камер поля.

Головной научной организацией по проекту «Спектр-УФ» выступает Институт астрономии РАН (ИНАСАН), Институт физики полупроводников изготавливает электронно-оптические преобразователи для блока камер поля — «глаз» телескопа, корпуса для ЭОП ― производства компании АО «Экран-ФЭП».


Спектр-УФ, фото предоставлено М.С. Сачковым


Калибровка фотокатодов — ключевой части электронно-оптических преобразователей — была проведена недавно в Институте ядерной физики имени Г.И. Будкера СО РАН (ИЯФ СО РАН).

Фотокатод — материал, способный при попадании на него света (фотонов) испускать электроны, а значит, получаемый электрический ток можно измерить, и, таким образом, оценить интенсивность излучения. Объединяя фотокатод, умножитель электронов (микроканальную пластину) и люминофорный экран в вакуумном корпусе, можно не просто измерять ток, а регистрировать изображения в соответствующем диапазоне длин волн.

«Исследование и создание фотокатодов — традиционное направление для нашей лаборатории, но с соединением цезий-йод мы раньше не имели дела. Поэтому, когда возник интерес со стороны коллег из ИНАСАН, мы осваивали технологию на ходу — разработали процесс изготовления фотокатодов, дополнительное оборудование и выяснили, какая конструкция позволит добиться максимальной квантовой эффективности. Такой, чтобы на фоточувствительной поверхности фотокатода выделялось как можно больше электронов в ответ на поглощенные фотоны. Результаты недавней калибровки, проведенной в ИЯФ СО РАН, показали, что квантовая эффективность первых тестовых устройств составляет 40% (упрощенно говоря, 100 фотонов “производят” 40 электронов), что существенно превышает пороговые значения, обязательные для “Спектр-УФ”», — поясняет заведующий лабораторией ИФП СО РАН доктор физико-математических наук, профессор РАН Олег Евгеньевич Терещенко.


Олег Терещенко, фото Владимира Трифутина


«Необходимое и достаточное значение квантовой эффективности для нас — 20%. Звезды — слабый источник излучения, и мы боремся за каждый процент, поэтому эффективность в 40% — это идеально. Таких параметров достигали ранее только в Японии, в компании “Hamamatsu Photonics”», — подчеркивает директор ИНАСАН доктор физико-математических наук, профессор РАН Михаил Евгеньевич Сачков.


Михаил Сачков


После космической миссии «Хаббл», которая работает на орбите уже 35 лет, «Спектр-УФ» станет единственным орбитальным телескопом, получающим данные о Вселенной в ультрафиолетовом диапазоне. Такая информация нужна для исследования атмосферы экзопланет, в том числе для поиска биологических маркеров (признака внеземной жизни), установления физических процессов звездообразования (молодые звёзды излучают в основном в ультрафиолете). А также для понимания тепловой и химической эволюции Вселенной, поиска темного барионного вещества.

В кооперацию по проекту «Спектр-УФ» входит множество ведущих научных и производственных организаций России, ранее одним из партнеров была испанская компания, которая разрабатывала фотокатоды для «глаз» телескопа. Но сотрудничество прекратилось, и потребовалось отечественное решение, которое предложили специалисты ИФП СО РАН.

«На одной из конференций мы увидели подробную презентацию о работах в лаборатории Олега Евгеньевича Терещенко и были приятно удивлены, что в Институте физики полупроводников есть, по сути, полный цикл производства электронно-оптических преобразователей. Это именно то, что нам надо, поскольку готового продукта, с требуемыми характеристиками не существует, его нужно разрабатывать, адаптировать для проекта. Кроме того, важно, что происходит взаимодействие двух академических институтов, развитие идет в обе стороны», — добавляет Михаил Сачков.

Вакуумный ультрафиолет (ВУФ) полностью поглощается земной атмосферой, поэтому для работы в этой области приходится создавать специализированные высоковакуумные установки. Единственный в России синхротронный источник, на котором можно проводить работы в ВУФ диапазоне, находится в ИЯФ СО РАН — станция синхротронного излучения «Космос», которая использует излучение из накопителя ВЭПП-4. Большую часть времени, около 75%, ВЭПП-4 работает как коллайдер, а оставшиеся 25% — как источник синхротронного излучения. На станции «Космос» можно добиться требуемой мощности излучения и провести калибровку устройств, работа которых связана с излучением в ВУФ и мягком рентгеновском диапазонах.

«В процессе калибровки мы соотносим показания прибора с показаниями эталонного детектора. Излучение в вакуумном ультрафиолете очень капризное: оно полностью поглощается в атмосфере, оптика и детекторы в этом диапазоне сильно меняют свои свойства при наличии даже незначительных загрязнений на поверхности. Поэтому приходится соблюдать особые меры предосторожности и все измерения проводить в высоком вакууме.

В данном случае мы измеряли эффективность фотокатодов при их облучении фотонами с определенной длиной волны. Эти фотоны мы выделяем из «белого» пучка синхротронного излучения с помощью монохроматора, в состав которого входят зеркала, дифракционная решетка и фильтры из фторида магния. Создателей “Спектр-УФ” особенно интересует узкий диапазон вокруг спектральной линии Лайман-альфа (~121,6 нанометров), так как она служит важным диагностическим инструментом для исследования атмосферы планет, активности звёзд. Но и для других длин волн мы оцениваем эффективность фотокатодов. Методика выполнения измерений отлажена, это довольно стандартная процедура. Так сложилось, что большую часть времени наша станция работает в мягком рентгеновском диапазоне, однако перенастроить установку для вакуумного ультрафиолета не слишком сложно», — отмечает старший научный сотрудник ИЯФ СО РАН кандидат физико-математических наук Антон Дмитриевич Николенко.


Антон Николенко, фото Светланы Ерыгиной


Сегодня проект «Спектр-УФ» позиционируется, как российский национальный и находится в степени готовности более 50%.

«После запуска мы планируем работать по базовой программе, закрывающей основные исследовательские направления, первое и самое важное из них — получение информации об атмосфере экзопланет. Кроме того, “Спектр-УФ” будет действовать в режиме обсерватории, когда астрономы (в том числе иностранные) подают заявки, и мы их реализуем. Проект востребован, — если судить по запросам в наблюдениях к телескопу имени Хаббла, — их больше, чем 10 к одному. То есть из десяти заявок реализуется только одна. “Спектр-УФ” полностью импортонезависим, у нас есть всё необходимое», — резюмирует Михаил Сачков.

Пресс-служба ИФП СО РАН