Отзыв

официального оппонента на диссертационную работу Ситникова Сергея Васильевича «Атомные процессы на поверхности кремния (111) в присутствии поверхностных вакансий», представленную в диссертационный совет Д 003.037.01 на соискание учёной степени кандидата физико-математический наук по специальности 01.04.07 — физика конденсированного состояния.

Развитие микроэлектроники уже давно перешло порог использования объектов наноразмерного масштаба на поверхности полупроводниковых приборов — компьютерных чипов и других элементов электронной техники. Перспективные технологии формирования таких полупроводниковых приборов, которые скоро могут прийти на смену нынешних, уже начинают сталкиваться не только с проблемой дефектности поверхности кремниевых пластин, но и с другим показателем совершенства их поверхностей — плотностью перепадов по высоте на небольших площадях. Данные перепады могут быть обусловлены большой плотностью атомных ступеней кристаллической поверхности или даже групп ступеней, большим количеством упорядоченных двумерных островков с высотой атомной ступени. Если всего один элемент, имеющий размер в 2 нм, например, компьютерного чипа при производстве попадёт на такую ступень, островок или край островка, то он может оказаться дефектным, а значит и сам весь чип с миллионами таких элементов будет бракованный. Поэтому вопрос получения полупроводниковых (в частности, кремниевых) поверхностей с очень высокой степенью совершенства, как по дефектам, так и по шероховатости, достаточно актуальный для развития будущего массового производства приборов для компьютерной техники.

Однако, для создания таких больших гладких поверхностей кремния, необходимо досконально знать процессы роста при высоких температурах (как основной метод очистки поверхности от загрязнений), их кинетику, чтобы отработать технологии массового получения таких поверхностей.

Диссертационная работа Ситникова С.В. посвящеана изучению массопереноса кремния на поверхности Si(111) при высоких (от около 1000°С и выше) температурах (когда возникают условия высокой концентрации вакансий), определению его атомных механизмов, а также количественных параметров процессов происходящих при массопереносе в таких условиях. На основании результатов, полученных при этих исследованиях, соискателем был предложен и реализован метод получения широких
террас на поверхности Si(111). Выбранные цели работы, объекты исследований, применяемые методики эксперимента и аналитические методы делают данную работу, несомненно, актуальной и важной для физики конденсированного состояния.

Работа состоит их введения, пяти глав, общего заключения и списка цитированной литературы, содержит 120 страниц текста, 35 рисунков, одну таблицу, список литературы состоит из 184 наименований.

Во введении обоснована актуальность темы исследований, формулируется цель и задачи работы, её научная новизна и практическая значимость, изложены основные защищаемые положения и описана структура диссертации.

В первой главе приведен обзор научных работ по выбранной теме диссертационной работы, проанализировано и описано современное представление явлений и механизмов роста на поверхности кристаллов.

Вторая глава посвящена методам анализа поверхности и методикам получения исходных поверхностей Si(111). В главе подробно рассмотрены экспериментальные методы исследования поверхности и методика анализа результатов этих методов: отражательная электронная микроскопия (ОЭМ) и анализ изменения morфологии больших участков поверхности (до 500 мкм) на основе ОЭМ-видео; атомно-силовая микроскопия (АСМ) и сканирующая электронная микроскопия (СЭМ), а также количественный анализ morфологии поверхности на их основе. Кроме того, подробно описаны методики получения структурированных исходных поверхностей Si(111) с использованием метода фокусированного ионного пучка (ФИП), оптической литографии с плазмохимическим травлением и ионно-лучевой обработки, которые использовались для получения образцов с концентрическими атомными ступенями и широкими террасами и образцов с пьедесталами заданного размера, покрытых концентрическими двумерными островками кремния.

Результаты исследований и их обсуждения занимают три следующие главы.

В Главе 3 приводятся результаты исследования зарождения и роста двумерных вакансийных островков на поверхности Si(111) и движение ступеней узких и широких террас в условиях сублимации кремния при высоких температурах подложки. В параграфе 3.1 рассматривается кинетика формирования двумерных вакансийных островков на террасах с концентрическими ступенями радиусом до 50 мкм, критический радиус которых, необходимый для формирования вакансийных двумерных островков, уменьшается с уменьшением температуры сублимации до 1180°C, после которой, по мнению автора, меняются условия на поверхности, что резко изменяет условия формирования вакансийных островков. Параграф 3.2 посвящён исследованию
действия ступеней при высокотемпературной сублимации для узких (10-50 мкм, со-
поставимых с критическими радиусами террас формирования вакансийных остров-
ков, полученных в параграфе 3.1) и широких (~200 мкм) террас, сформированных за-
ранее на одной поверхности. Приводится экспериментальная зависимость отношения
время смещения ступени на ширину террасы широкой к узкой в процессе сублимаци-
ии при температурах 1030+1320°C. Для описания результатов данной зависимости
выше 1180°C была предложена модель с учётом ухода вакансий в объём образца, расчёты по которой дают достаточное совпадение с экспериментальными данными.
В параграфе 3.3 рассматривается кинетика роста вакансийных островков и опреде-
ляется энергия активации разрастания таких островков в условиях сублимации крем-
ния с поверхности.

В четвёртой главе автор рассматривает процессы формирования вакансийных
двумерных островков при термическом травлении молекулярным кислородом поверх-
ности Si(111). В параграфе 4.1 описываются условия такого травления (зависимость
необходимого давления кислорода от температуры поверхности) и сам процесс взаи-
модействия молекулярного кислорода с кремниевой поверхностью. Показаны экспе-
риментальные данные температурной зависимости критического радиуса террас с
концентрическими ступенями при различных скоростях травления. В параграфе 4.2
предложена теоретическая модель зарождения вакансийных двумерных островков
для описания экспериментальных данных. На основании данной модели были опре-
делены аналитические выражения для определения критического размера террасы
от частоты зарождения двумерных вакансийных островков. В параграфе 4.3. приве-
дены результаты применения аналитических выражений, полученных в параграфе
4.2, для обработки экспериментальных данных зависимости критического радиуса
террасы от температуры при разных скоростях травления молекулярным кислородом.
Показано, что предложенная теоретическая модель хорошо описывает данные, полу-
ченные при высоких температурах (выше критической температуры 1180°C), что ав-
тор связывает с определением массопереноса кремния нос поверхности как взаимо-
действие вакансии с атомной ступенью террасы.

Пятая глава содержит результаты исследования роста двумерных островков на
поверхности Si(111) в условиях высокой температуры подложки при дополнительном
осаждении кремния. В параграфе 5.1 представлены данные роста двумерных вакан-
сионных островков при дополнительном осаждении кремния меньше скорости субли-
мации. Приводятся температурные зависимости критического размера террасы, при
котором на ней зарождается вакансионный островок, для разных скоростей осаждения кремния. Увеличение параметра критического размера террасы для одинаковой температуры при увеличении скорости осаждения кремния автор логично связывает с компенсацией образования зародыша вакансионного островка за счет увеличения количества атомов на поверхности из-за осаждения дополнительных атомов кремния. Автором определено, что зависимость квадрата критического размера террасы для образования вакансионного островка от частоты зарождения описывается степенной зависимостью для температур ниже критической температуры 1180°C, рассчитаны показатель степени, энергия активации вакансионного островка и оценена энергия формирования пары вакансий-адатом. В параграфе 5.2 автором приводится методика получения широких террас кремния, разработанная на основе полученных данных критического размера террас, необходимых для формирования вакансионных островков в условиях температур ниже 1000°C и компенсирующем потоке осаждающихся атомов кремния, скорость которого не превышает скорости сублимации. Отмечена критическая важность для получения широких террас таким методом сохранения стабильными во время формирования параметров температуры и равномерности прогрева образца и скорости потока осаждающегося кремния. Автором отмечается, что данным методом были получены моноатомные террасы Si(111) шириной до значения, больше 200 мкм, с очень гладкой поверхностью после её быстрого охлаждения, среднеквадратичная шероховатость которых составляла менее 0,05 нм. В параграфе 5.3 автора отмечает, что для определённых случаев необходимы широкие террасы, расположенные не на дне поверхности образца, а на самом её верху. Для этого были проведены исследования, результаты которых приведены в параграфе, по формированию двумерных островков на заранее приготовленных травлением пьедесталах, методом осаждения кремния на нагреваемую в диапазоне 900°-1170°C подложку, когда скорость осаждения атомов кремния превышает скорость сублимации. По результатам исследований построены зависимости квадрата критического размера террасы от частоты зарождения островков, определено, что показатель степени не меняется в данном интервале температур, а также вычислена энергия активации двумерного зарождения и размер зародыша, который лежит в интервале 12-38 атомов. Автор указывает, что таким методом были получены моноатомные террасы, не превышающие размера 150 мкм. Однако хотелось бы отметить, что длительный отжиг кремния (который требуется для процедур из параграфов 5.2 и 5.3) в диапазоне температур 950°-1000°C благоприятен для формирования на поверхности карбида кремния, кото-
рый растет в виде игл нормальных к поверхности, и вокруг которых происходит замедление или остановка движения атомных ступеней (т.е., существенно ухудшается шероховатость поверхности). Поэтому данные процедуры требуют особой тщательности при подготовке образцов и проведении самих процедур.

Достоверность полученных научных результатов несомненна и обеспечивается корректным применением современных методов получения и анализа поверхности, а также грамотным применением методов определения параметров рассматриваемых систем на основе предложенных моделей.

Новизна результатов и их научная значимость подтверждена публикациями соискателя. По теме исследований опубликовано 19 работ, одна из которых является патентом РФ, из остальных 6 статей опубликовано в журналах, входящих в перечень рецензируемых научных журналов ВАК РФ.

К основным недостаткам работы можно отнести следующее:

1. Глава 5, в параграфе 5.2 «Атомно-гладкие террасы больших размеров» автор пишет: «Шероховатость (RMS) такой поверхности составляет величину порядка 0,04 нм. С меньшей шероховатостью может быть только идеальная поверхность кристалла без адсорбированных атомов», под адсорбированными атомами в диссертации имеются в виду одиночные адатомы, не связанные между собой. Но определение шероховатости выполнялось ex situ, когда образец покрывался тонкой плёнкой естественного окисла. Несмотря на то, что приводятся ссылки на исследования, где определено, что окисел на протяжёных объектах (ступени, двумерные островки) сохраняет рельеф исходной поверхности до некоторой толщины, но нигде не говорится, что это имеет место для нуллерных дефектов, которыми являются адатомы и вакансии кремния. Может быть определённое количество адатомов может снимать стресс между кристаллической поверхностью Si(111) и плёнкой диоксида кремния, делая последнюю менее шероховатой, чем она была бы от «идеальной поверхности»?

2. В выводах по Главе 2 утверждается, что: «С целью получения количественных данных о размерах и степени покрытия 2D-островками широких террас разработано программное обеспечение для анализа ACM-изображений», но в самой главе, в параграфе 2.4, написано только, что «используя программу ImageJ, автоматически определялись границы островков и вычислялась площадь островков». Программа ImageJ является общедоступной программой с открытым исходным кодом, которой можно подключать сторонние плагины для обработки
изображений, но в самой главе об создании плагина такого типа не говорится ничего. Может быть, автор имел в виду подбор критериев обработки изображение программой ImageJ для получения более достоверного размера двумерных островков на террасах с наименьшей ошибкой?

3. В работе постоянно упоминается понятие «монослои» (и его сокращение «MC»), но никак не расшифровывается, что это такое — количественная характеристика (7,83×10¹⁴ атомов или других объектов на см² для поверхности Si(111)) или качественная (вся видимая часть кристаллической поверхности, растущая или сублимирующаяся слоем с определённой толщиной — для Si(111) это двойной слой кремния, когда размеры объекта на ней измеряются в долях поверхности). Когда во втором положении на защиту говорится про: «Время сублимации одного монослоя на поверхности Si (111)», то непонятно, имеется в виду половина двойного слоя Si(111) или весь двойной слой. Когда упоминается про покрытие адатомов, то кажется, что автор использует количественное понятие монослоя, но при упоминании в выводах по Главе 3 про: «на террасах формируются двумерные вакансионные островки с покрытием поверхности ~0,05 MC», затруднительно понять, что это — 1 вакансионный островок на ~2,5 нм² (размер меньше, чем половина элементарной ячейки поверхностной структуры Si(111)7×7) или то, что всего около 5% поверхности занято вакансионными островками?

4. Автор зачем-то использует в работе два понятия к обычным плоским и вакансионным островкам — «двумерные островки» и «2D-островки», даже на одной странице, хотя правильно надо использовать первое понятие, второе является англицизмом, сокращением от английского «two-dimensional» («двумерный»). Также в тексте постоянно приводится по определению шероховатости поверхности термин «RMS» (англицизм от «root mean square» — «среднеквадратичный»), хотя в русском языке существует широко используемый термин «среднеквадратичная шероховатость поверхности»

5. В Главе 1, посвящённой литературному обзору, в параграфе 1.1 последний абзац посвящён поверхности Si(100), его структуром и различным определённым параметрам роста двумерных островков. Но диссертация посвящена исследованиями на поверхности Si(111). Если автор решил привести эти данные для общего представления, почему он не привёл такие исследования по другим граням монокрystalлического кремния, например, Si(110) или Si(557)? В той же Главе 1, в параграфе 1.4 приводятся параметры поверхности Si(111) с наличием большого
количество бора, хотя диссертация посвящена исследованию механизмов массопереноса на чистой поверхности Si(111).

6. Такая же избыточность присутствует и в Главе 2. В параграфе 2.1, посвящённому методам анализа структуры и морфологии поверхности, описываются (кратко) методы дифракции медленных электронов, микроскопии медленных электронов и сканирующей туннельной микроскопии, хотя из текста диссертации складывается впечатление, что они не использовались для получения данных. Также в параграфе 2.4 описываются разные режимы работы атомно-силового микроскопа и сканирующего электронного микроскопа, но не указываются режимы работы этих методов, которые использовались для получения данных. Несмотря на избыточность одних сведений, автор не приводит даже простейшего определения термина «шероховатости поверхности», нахождению которой посвящена часть работы, и методику его численного нахождения из экспериментальных данных.

7. По оформлению рисунков. У большинства рисунков подписи оформлены правильно, без точки на конце, но у некоторых рисунков (1.4, 3.2, 3.3, 3.6, 4.2, 4.3) подписи заканчиваются точкой, что является ошибкой в оформлении. Также у почти всех рисунков, где приводятся графики и на оси указаны не целые числа, (рисунки 3.1д, 3.3а, 3.5, 3.6, 4.5, 5.26, 5.6) разделителем целой и дробной части чисел выступает точка, хотя в русском языке этим должна быть запятая. Исключением является только один график, где приводятся не целые числа, — рисунок 4.4. На рисунке 3.5 в подписи приводится выражение τ_p/τ_s, но в тексте автор указывает это отношение как t_p/t_s.

Однако отмеченные выше недостатки не являются принципиальными, и хотя несколько затрудняют научное восприятие текста, но не снижают ценность научной работы и не оспаривают её достоверность. Полученные в диссертации результаты несомненно могут быть использованы как в практическом плане получения широких террас на Si(111), так и для дальнейшего изучения процессов массопереноса кремния по поверхности.

В целом диссертация Ситникова С.В. является законченным исследованием, выполненным на высоком научном и экспериментально-техническом уровне. Выводы и положения, выносимые на защиту, достаточно обоснованы. Работа обладает несомненной практической значимостью и научной новизной.
Диссертация оформлена в соответствии с требованием ВАК, написана хорошим научным языком и содержит мизерное количество грамматических и пунктуационных ошибок (почти все из которых — лишние или отсутствующие пробелы — находятся во Введении, пункте «Апробация работы»). Основное содержание диссертации опубликовано в центральных научных российских и зарубежных журналах. Работа прошла серьезную апробацию, её результаты обсуждались на международных, российских и региональных конференциях, научных школах и симпозиумах.

Представленный автореферат достаточно полно и точно отражает содержание диссертации. Объём и оформление диссертации не вызывает замечаний (за исключением упомянутых выше).

На основании вышеизложенного считаю, что работа Ситникова Сергея Васильевича «Атомные процессы на поверхности кремния (111) в присутствии поверхностных вакансий» отвечает требованиям, предъявляемым ВАК к диссертациям на соискание учёной степени кандидата наук, а её автор, Ситников Сергей Васильевич, заслуживает присуждения ему учёной степени кандидата физико-математических наук по специальности 01.04.07 — физика конденсированного состояния.

Официальный оппонент:

Азатьян Сергей Геннадьевич

кандидат физико-математических наук,
научный сотрудник Отдела физики поверхности,
Федеральное государственное бюджетное учреждение науки
Институт автоматики и процессов управления
Дальневосточного отделения Российской академии наук
Адрес: 690041, г. Владивосток, улица Радио, дом 5.
Тел.: +7 (423)231 04 39
Факс: +7 (423)231 04 52
E-mail: sergei@iacr.dvo.ru

15 сентября 2017 г. [подпись]

Азатьян С.Г.

Подпись Азатьяна С.Г., к.ф.-м.н., удостоверена.