На правах рукописи

Trocumb

ПОСТОЛОВА Светлана Владимировна

ЭЛЕКТРОННЫЙ И ВИХРЕВОЙ ТРАНСПОРТ В СВЕРХПРОВОДЯЩИХ ПЛЁНКАХ НИТРИДА ТИТАНА

01.04.07. – физика конденсированного состояния

Автореферат диссертации на соискание ученой степени кандидата физико-математических наук Работа выполнена в Федеральном государственном бюджетном учреждении науки Институте физики полупроводников имени А.В. Ржанова Сибирского отделения Российской академии наук (ИФП СО РАН), г. Новосибирск.

Научный руководитель: Батурина Тать

Батурина Татьяна Ивановна

кандидат физико-математических наук, доцент Старший научный сотрудник Федерального государственного бюджетного учреждения науки Институт физики полупроводников им. А. В. Ржанова Сибирского отделения Российской академии наук

Официальные оппоненты: Панкратов Андрей Леонидович

доктор физико-математических наук, профессор Старший научный сотрудник отдела терагерцовой спектрометрии Института физики микроструктур РАН — филиала Федерального государственного бюджетного учреждения "Федеральный исследовательский центр Институт прикладной физики Российской академии наук"

Пейсахович Юрий Григорьевич

доктор физико-математических наук, доцент

Профессор кафедры общей физики Новосибирского государственного технического университета

Ведущая организация: Национальный исследовательский университет "Высшая школа экономики"

Защита состоится <u>10 октября</u> 2017 года в <u>10:00</u> на заседании диссертационного совета Д 003.037.01 на базе Федерального государственного бюджетного учреждения науки Института физики полупроводников имени А.В. Ржанова Сибирского отделения Российской академии наук по адресу: 630090, Новосибирск, пр. ак. Лаврентьева, 13.

С диссертацией можно ознакомиться в библиотеке Федерального государственного бюджетного учреждения науки Института физики полупроводников имени А.В. Ржанова Сибирского отделения Российской академии наук и на сайте: http://www.isp.nsc.ru/comment.php?id_dissert = 923

Автореферат разослан 2017 года

Ученый секретарь диссертационного совета, доктор физико-математических наук, профессор

Погосов А.Г.

ОБЩАЯ ХАРАКТЕРИСТИКА РАБОТЫ

Актуальность темы

На протяжении последних лет стабильно высок интерес к свойствам широкого круга низкоразмерных сверхпроводящих систем: от тонких плёнок сверхпроводников до решёток джозефсоновских переходов и гетероструктур из изолирующих слоёв с интерфейсной сверхпроводимостью. Это обусловлено развитием технологий изготовления наноструктур и привлекательностью двумерной сверхпроводимости как с прикладной [1], так и с фундаментальной точки зрения.

В двумерной системе установление макроскопической фазовой когерентности волновой функции куперовского конденсата невозможно, поскольку для этого необходимо наличие дальнего порядка в сверхпроводнике. Но в двумерном случае любая флуктуация приводит к разрушению дальнего порядка [2]. С другой стороны, В. Л. Березинским было показано [3,4], что в двумерной системе существует "квази-дальний" порядок. При рассмотрении поведения различных двумерных систем с непрерывной группой симметрии, к которым, среди прочих, относится двумерная бозе-жидкость с флуктуациями фазы параметра порядка, было показано [4], что при низких температурах корреляционная функция фаз в зависимости от расстояния стремится к нулю на бесконечности, что означает отсутствие простого дальнего порядка, но она затухает не экспоненциально, как в системе с ближним порядком, а как степенная функция расстояния. При высоких температурах коррелятор спадает экспоненциально, следовательно при повышении температуры в системе происходит фазовый переход [3].

Вывод о существовании перехода к квази-дальнему порядку был сделан Дж. М. Костерлицем и Д. Дж. Таулессом при рассмотрении двумерного газа топологических дефектов [5]. Количество этих дефектов ограничено лишь условием общей нейтральности системы. Было показано: если энергия взаимодействия топологических дефектов логарифмически зависит от расстояния между ними, то ниже определенной температуры, впоследствии названной температурой Березинского-Костерлица-Таулесса (БКТ), дефекты объединяются в пары, и в системе устанавливается топологический порядок.

В тонкой пленке сверхпроводника (или сверхтекучей жидкости) топологическим дефектом является вихрь, порожденный флуктуацией фазы параметра порядка. В точке перехода происходит скачок сверхтекучей плотности, величина которого универсальна [6,7]. В сверхпроводниках это проявляется в скачкообразном изменении таких термодинамических характеристик, как глубина проникновения магнитного поля и кинетическая индуктивность [8–10]. Ниже температуры Березинского-Костерлица-Таулесса вихри и антивихри объединяются в неподвижные диполи и система переходит в сверхпроводящее бездиссипативное состояние. (Конечно, в силу конечных размеров системы при любой ненулевой температуре существует экспоненциально малая вероятность появления несвязанных вихрей за счет тепловых возбуждений.)

Экспериментальное наблюдение перехода БКТ в сверхпроводящих системах возможно только в условиях, когда планарные размеры системы меньше или порядка глубины проникновения магнитного поля [11]. Только тогда энергия взаимодействия вихрей в плёнке логарифмически зависит от расстояния между ними [12]. Немного выше температуры перехода БКТ, в резистивной области сверхпроводящего перехода, диссипация энергии при протекании тока обусловлена движением свободных вихрей, что проявляется в линейной зависимости напряжения от пропускаемого тока V \propto I. Ниже температуры перехода диссипация энергии вызвана разрывом пар вихрь-антивихрь под действием тока. При этом вольтамперные характеристики имеют степенной вид $V \propto I^{\alpha}$ [7], с показателем степени $\alpha(T)$ убывающим обратно пропорционально росту температуры [13]. В точке перехода происходит скачок Нельсона-Костерлица — α сменяется с 3 на 1. В эксперименте, однако, показатель степени α часто демонстрирует не скачок, а некий плавный кроссовер от 3 до 1 [14-22], растянутый по температуре на $\Delta T_{\rm EKT}$, так что $\Delta T_{\rm вкт} \simeq T_{\rm вкт}$, где $T_{\rm вкт}$ определяется авторами из условия α = 3. Такой кроссовер наблюдается при относительно высоких температурах, когда система обладает ненулевым сопротивлением, которое объясняют наличием свободных вихрей в конечной системе при любой ненулевой температуре [23]. Всё вышесказанное вызывает сомнения как в интерпретации экспериментальных результатов, так и в возможности наблюдения в сверхпроводящих системах чёткого перехода Березинского-Костерлица-Таулесса, нескрытого размерными эффектами [24].

Флуктуации существенно влияют на поведение двумерной системы не только в сверхпроводящем, но и в нормальном состоянии. Термодинамически устойчивые (но некогерентные) куперовские пары появляются в системе при температуре сверхпроводящего перехода T_c ($T_c > T_{\rm БКТ}$), когда модуль параметра порядка становится отличным от нуля. Однако и выше T_c , во флуктуационной области сверхпроводящего перехода, в силу флуктуаций параметра порядка, в системе есть флуктуационные куперовские пары, которые существенно влияют на электронный транспорт. В связи с этим существует экспериментальная проблема разграничения флуктуационной и резистивной областей в растянутом по температуре сверхпроводящем переходе в квазидвумерной системе [25].

Данная работа призвана разрешить вышеописанные проблемы в интерпретации поведения квазидвумерных систем вблизи сверхпроводящих переходов.

Цель и задачи исследования

Цель настоящей диссертационной работы состоит в установлении механизмов, лежащих в основе вихревого и электронного транспорта вблизи сверхпроводящих переходов в квазидвумерных системах. Объектом исследования выбрана серия сверхпроводящих плёнок нитрида титана (TiN) различной толщины.

Для достижения цели были поставлены следующие задачи:

1. Исследовать линейную и нелинейную проводимость в тонких сверхпроводящих плёнках TiN.

2. Изучить влияние беспорядка, мерой которого является удельное сопротивление квадрата плёнки, на сверхпроводящие свойства плёнок TiN, такие как ширина перехода в сверхпроводящее состояние и критическая температура T_c .

3. Выявить физические эффекты, управляющие нелинейной проводимостью вблизи сверхпроводящих переходов. Установить условия наблюдения перехода БКТ в сверхпроводящих плёнках.

Научная новизна и практическая значимость работы

- 1. Обнаружено, что при температуре топологического перехода Березинского-Костерлица-Таулесса $T_{\rm БКТ}$, меняется характер вольтамперных характеристик V-I: помимо скачка Нельсона-Костерлица, при $T < T_{\rm БКТ}$ появляется гистерезис в V-I, тогда как при $T > T_{\rm БКТ}$ гистерезис отсутствует. Показано, что такое поведение обусловлено тепловой бистабильностью системы.
- 2. Показано, что наличие степенных участков вольтамперных характеристик с показателем степени, плавно возрастающим от 1 до 3 с понижением температуры, обусловлено нагревом электронного газа.
- 3. Предложен способ определения критической температуры сверхпроводящего перехода T_c из анализа нелинейных вольтамперных характеристик.

На защиту выносятся следующие положения

- В сверхпроводящих плёнках нитрида титана, выращенных по технологии атомарно-слоевого осаждения, падение сопротивления с температурой вплоть до области, где сопротивление убывает максимально быстро, обусловлено квантовыми вкладами в проводимость от флуктуационных куперовских пар, среди которых доминирующим является вклад Маки-Томпсона.
- Критическая температура сверхпроводящего перехода однозначно определяется из анализа нелинейных вольтамперных характеристик в рамках модели нагрева электронного газа.
- 3. Вольтамперные характеристики плёнок нитрида титана демонстрируют степенной вид зависимости напряжения от тока V ∝ I^α, где показатель степени α с возрастанием температуры измерения плавно, без изломов, убывает с α > 3 до 1 в широком температурном интервале таком, что этот интервал сравним с величиной температуры, при которой α = 3. Такой вид вольтамперных характеристик обусловлен джоулевым нагревом системы.
- 4. В плёнках нитрида титана с характерными размерами меньше, чем эффективная глубина проникновения магнитного поля, сверхпроводящее состояние устанавливается вследствие вихревого перехода Березинского– Костерлица–Таулесса. Ниже температуры перехода наблюдается гистерезис вольтамперных характеристик, который обусловлен тепловой бистабильностью системы.

Степень достоверности и апробация работы

Достоверность представленных в работе результатов обеспечивается использованием современных методов исследования, воспроизводимостью результатов и прекрасным согласием экспериментальных и расчетных данных.

Основные результаты, представленные в диссертации, докладывались и обсуждались на научных семинарах в Институте физики полупроводников СО РАН, а также на девяти конференциях: XVI Международный симпозиум "Нанофизика и наноэлектроника" (Нижний Новгород, 2012); III International Conference on Superconductivity and Magnetism (Istanbul, 2012); Advanced research workshop "Meso-2012": Mesoscopic and strongly correlated electron systems - 6 (Черноголовка, 2012); International workshop on strongly disordered superconductors and the superconductor-insulator transition (Villard-de-Lans, 2014); XVIII Международный симпозиум "Нанофизика и наноэлектроника" (Нижний Новгород, 2014); X Сибирский семинар по сверхпроводимости и смежным проблемам - "OK-HO" (Новосибирск, 2014); 5th International Conference on Superconductivity and Magnetism (Fethiye, 2016); XI Семинар по сверхпроводимости и смежным проблемам - "OKHO" (Красноярск, 2016); XXI Международный симпозиум "Нанофизика и наноэлектроника" (Нижний Новгород, 2017).

Публикации

По результатам диссертации опубликовано 6 работ в рецензируемых научных изданиях и 8 тезисов международных (4) и российских конференций (4).

Личный вклад автора в экспериментальные работы, выполненные в соавторстве, состоял в непосредственном участии в проведении экспериментов, анализе, обработке, интерпретации результатов и подготовке публикаций.

Структура диссертации. Диссертация состоит из введения, 6 глав, заключения и списка цитируемой литературы из 145 наименований. Общий объём диссертации составляет 112 страниц, включая 48 рисунков и 5 таблиц.

ОСНОВНОЕ СОДЕРЖАНИЕ РАБОТЫ

Во введении обоснована актуальность темы диссертации, изложены цели и задачи диссертации, описана структура дальнейшего изложения материала.

Первая глава (Электронный и вихревой транспорт в тонких плёнках вблизи сверхпроводящих переходов) является обзорной и состоит из трех частей.

<u>В первой части</u> приведены основные положения теории квантовых вкладов в проводимость квазидвумерных неупорядоченных сверхпроводящих систем. Приводятся теоретические выражения, необходимые для анализа экспериментальных данных. Сделан обзор экспериментальных работ.

В интервале температур $T_c < T \ll \Theta$, где T_c — критическая температура сверхпроводящего перехода, Θ — температура Дебая, можно пренебречь рассеянием электронов на фононах. В результате температурная зависимость сопротивления R(T) сверхпроводящих систем определяется квантовыми эффектами [26,27]: слабой локализацией электронов (WL) и электрон-электронным взаимодействием в диффузионном (ID) и куперовском каналах. Вклады в проводимость от взаимодействия в куперовском канала (сверхпроводящие флуктуации) разделяются на три типа: вклад Асламазова-Ларкина (AL), обусловленный прямой добавкой в проводимость от флуктуационных куперовских пар; вклад в плотность состояний (DOS), отражающий уменьшение плотности состояний нормальных электронов в результате флуктуационного куперовского спаривания; вклад Маки-Томпсона (MT), отвечающий когерентному рассеянию на примесях электронов, составляющих флуктуационную куперовскую пару.

По мере приближения температуры к T_c все вклады в проводимость от сверхпроводящих флуктуаций расходятся, то есть сопротивление должно падать до нуля, а система переходить в сверхпроводящее состояние. Однако в квазидвумерном случае при температурах $T \leq T_c$ из-за наличия флуктуаций фазы волновой функции куперовских пар система остается в резистивном состоянии. В связи с этим существует проблема разграничения флуктуационной области ($T > T_c$) и резистивной области ($T < T_c$) на кривой сверхпроводящего перехода [25]. На сегодняшний день наиболее распространенные подходы к определению T_c следующие: T_c выбирается по некому условному критерию [20,22] (например как температура, при которой сопротивление падает до 50% от нормального); либо предполагается, что вблизи T_c температурный ход сопротивления определяется прямой проводимостью флуктуационных куперовских пар, то есть учитывается только вклад Асламазова-Ларкина. Для описания растянутого сверхпроводящего перехода и определения T_c вклад Маки-Томпсона в R(T) учитывается крайне редко [18]. А при учёте этого вклада используется аппроксимационная формула, верная лишь в непосредственной близости от T_c .

Во второй части изложены основные положения теории топологического перехода Березинского-Костерлица-Таулесса для сверхпроводящих систем. Сделан обзор экспериментальных работ, посвященных наблюдению вихревого перехода БКТ в различных сверхпроводящих системах.

Теория топологического перехода Березинского - Костерлица - Таулесса применима только к двумерным системам. Если энергия взаимодействия топологических дефектов в системе логарифмически зависит от расстояния между ними, то ниже определенной температуры, дефекты объединяются в пары и в системе устанавливается топологический порядок.

Как известно, состояние сверхпроводника описывается параметром порядка $\Psi = |\Psi| \exp(i\varphi)$, имеющим смысл волновой функции куперовских пар, где модуль $|\Psi|$ и фаза φ могут зависеть от координаты и времени. В случае тонкой плёнки при уменьшении температуры до $T = T_c$ возникает отличный от нуля модуль параметра порядка $|\Psi| \neq 0$, однако в системе существуют флуктуации фазы параметра порядка $\Delta \varphi \neq 0$, проявляющие себя в виде вихревых токов - вихрей. Вихревые токи могут течь как по, так и против часовой стрелки. Говорят, что в системе существует газ вихрей и антивихрей. Если расстояние между вихрями меньше эффективной глубины проникновения магнитного поля λ_{\perp} , то энергия взаимодействия вихрей логарифмически зависит от расстояния между ними [28]. Если при этом характерный размер системы не превосходит λ_{\perp} , то в системе происходит чёткий переход БКТ. Визитной карточкой перехода БКТ считаются наблюдаемые ниже $T = T_{\text{вкт}}$ степенные вольт-амперные характеристики $V \propto I^{\alpha(T)}$, обусловленные разрывом пар вихрь-антивихрь под действием пропускаемого через систему тока. При температуре $T_{\scriptscriptstyle\rm BKT}$ происходит скачок показателя степени с lpha = 3 на $\alpha = 1.$

Из приведенного в диссертации обзора работ, посвященных переходу БКТ [14-22], видно, что как правило, в эксперименте наблюдается только степенной участок в вольт-амперных характеристиках (ВАХ). При этом нет полной картины эволюции ВАХ вблизи перехода БКТ: степенной участок — скачок напряжения при критическом токе — переход в нормальное состояние. Или приводится полная эволюция ВАХ по току, но на предмет перехода БКТ анализируется область критического тока. Всё вышесказанное вызывает сомнения как в интерпретации экспериментальных результатов, так и в возможности наблюдения в сверхпроводящих системах чёткого перехода Березинского-Костерлица-Таулесса, нескрытого за размерными эффектами [24].

<u>В третьей части</u> обсуждается явление джоулева нагрева электронного газа в металлах в присутствии постоянного внешнего электрического поля. Приводятся основные теоретические выражения, необходимые для анализа экспериментальных данных. Сделан краткий обзор экспериментальных работ, касающихся эффектов разогрева электронов в проводниках с током.

Кратко эффект джоулева нагрева электронов в металлах состоит в следующем. Ток, пропускаемый через систему, в единицу времени сообщает электронам энергию dP. Прежде чем передать эту энергию решётке (фононам) за счет электрон-фононного взаимодействия электроны успеют нагреться на dT. Таким образом, при пропускании тока эффективная температура нормальных электронов становится выше, чем температура решётки. Такой эффект "горячих электронов" является общим свойством проводников с током при низких температурах, и возникает из-за резкого убывания частоты передачи энергии от электронов к фононам с охлаждением $\tau_{el-ph}^{-1} \propto T^n$. Значение n = 4 наблюдается в изоляторах. В большинстве металлов, в том числе в плёнках нитрида титана, наблюдается значение n = 3. Модель разогрева электронного газа внешним полем прекрасно описывает нелинейное поведение вольтамперных характеристик тонких плёнок диэлектриков, металлов и сверхпроводников в нормальном состоянии. На сегодняшний день является открытым вопрос о применимости этой модели и её видоизменении для описания поведения систем вблизи сверхпроводящего перехода.

Во второй главе (Нитрид титана) приведены сведения о зонной структуре и электронных свойствах нитрида титана. Сделан обзор экспериментальных исследований низкотемпературных свойств плёнок TiN.

Плёнки TiN представляют интерес для создания чувствительных сверхпроводниковых детекторов, поэтому их свойства изучаются довольно интенсивно. Стехиометрический состав и условия изготовления сильно влияют на структурные параметры, ферми-жидкостные характеристики и сверхпроводящие свойства плёнок TiN. В зависимости от степени беспорядка величина сверхпроводящей щели **Δ** может как соответствовать, так и в несколько раз превосходить отношение, предсказанное в рамках модели Бардина-Купера-Шриффера $\Delta/kT_c(0) = 1.76$. В плёнках TiN наблюдается прямой переход сверхпроводник-изолятор по беспорядку, и магнитоиндуцированный зарядовый переход Березинского-Костерлица-Таулесса.

В третьей главе (Методика эксперимента) кратко изложена технология изготовления плёнок TiN и образцов для измерений, и описана методика измерений.

В работе исследуются транспортные свойства тонких сверхпроводящих плёнок TiN различной толщины в диапазоне от 3.6 нм до 23 нм, изготовленных методом атомарно-слоевого осаждения. Приводятся результаты исследования поверхности в атомно-силовом микроскопе и структурного анализа плёнок: изображения поперечного сечения и изображения в плоскости плёнок в высокоразрешающем просвечивающем электронном микроскопе, а также картины электронной дифракции. Проведённое исследование показывает, что плёнки являются поликристаллическими, однородными по толщине, не имеют разрывов и проколов и обладают чёткой границей раздела TiN/SiO₂. На основании исходных плёнок в ИФП СО РАН методом фотолитографии с последующим плазмохимическим травлением были изготовлены образцы для измерений в виде холловских мостиков.

Во второй части главы приводится краткое описание методов измерения температурных зависимостей сопротивления и вольтамперных характеристик по четырёхточечной схеме.

Четвёртая глава (Линейный электронный транспорт во флуктуационной области сверхпроводящего перехода) посвящена исследованию низкотемпературных транспортных свойств плёнок TiN различной толщины. Представлены результаты анализа температурных зависимостей сопротивления в температурном диапазоне от $T \leq T_c$ до $T \sim 10T_c$.

<u>В первой части</u> приведены основные транспортные параметры исследуемых плёнок TiN. Параметры плёнок вычислены исходя из величины сопротивления на квадрат в нормальном состоянии R_N при T = 300 K, толщины плёнки d, концентрации носителей n, определенной из измерений эффекта Холла при 10 K, экспериментально измеренной величины верхнего критического поля B_{c2} и стандартных выражений для вырожденного электронного газа.

Таблица 1: Параметры плёнок TiN. d — толщина плёнки; R_N — сопротивление на квадрат плёнки при 300 K; n — концентрация электронов; T_c — критическая температура сверхпроводящего перехода (см. параграф 4.2); B_{c2} — верхнее критическое поле при 0 K; D — коэффициент диффузии; k_F — волновой вектор Ферми; l — длина свободного пробега электрона; λ_F — длина волны Ферми; $\rho(E_F)$ — плотность состояний на уровне Ферми; l_T — тепловая длина когерентности при 10 K.

d	R_N	n	T_c	B_{c2}	D	$k_F l$	l	λ_F	$\rho(E_F)$	$l_T(10 \text{ K})$
HM	Ом	$10^{22} \mathrm{cm}^{-3}$	K	Тл	$c M^2/c$		HM	HM	10 ⁴⁷ /(Джм ³)	HM
3.6	2520	1.5	1.290	2.88	0.34	1.8	0.23	0.83	1.26	12.8
5	855	2.4	2.545	3.36	0.58	3.2	0.36	0.66	1.59	16.6
7	335	4.2	3.055	3.41	0.68	4.9	0.45	0.59	2.5	18.1
10	215	3.2	3.215	3.22	0.76	5.8	0.59	0.64	2.4	19.1
12	165	3.3	3.298	3.15	0.80	6.2	0.62	0.63	2.5	19.5
18	90	3.5	3.365	3.13	0.82	7.4	0.73	0.62	2.9	19.8
23	65	3.7	3.199	2.79	0.87	7.9	0.77	0.61	3.0	20.5

Концентрация носителей *n* в исследуемых плёнках соответствует веществу с металлическим типом проводимости. Величина $k_Fl < 10$, то есть исследуемые плёнки являются плохим металлом. Длина свободного пробега *l* примерно равна межатомному расстоянию. Такой результат соответствует тому, что металлические свойства плёнок TiN определяются состоянием атомов титана, являющегося переходным металлом, а значит в проводимости участвуют электроны d-орбитали, которые по своим свойствам занимают промежуточное положение между локализованными и коллективизированными электронами. Вычисления плотность состояний $\rho(E_F)$ по порядку величины совпадает с результатами вычислений [29] и оценкой (~ $3.7 \cdot 10^{47}$ Дж⁻¹м⁻³) для плёнок TiN, выращенных методом магнетронного напыления [30]. Энергетический спектр и движение электронов в плёнке трёхмерны, поскольку длина свободного пробега *l* « *d*. При это, в рассматриваемом диапазоне температур исследуемые плёнки являются двумерными по отношению к эффектам слабой локализации и электрон-электронного взаимодействия в диффузионном канале.

Во второй части (Сверхпроводящие флуктуации и критическая температура сверхпроводящего перехода) проводится количественный анализ экспериментальных температурных зависимостей сопротивления с позиций теории квантовых вкладов в проводимость.

Приводятся температурные зависимости сопротивления в температурном диапазоне от $T \leq T_c$ до $T \sim 10T_c$ для плёнок TiN, перечисленных в табл. 1. Для всех плёнок при понижении температуры сопротивление сначала увеличивается, достигает максимума R_{max} , после чего начинает уменьшаться. Показано, что рост сопротивления с убыванием температуры обусловлен квантовыми вкладами в проводимость квазидвумерного металла: вкладом от слабой локализации и вкладом от электрон-электронного взаимодействия в диффузионном канале.

После достижения максимума сопротивление убывает с понижением температуры до неизмеримо малого (рис. 1 а). В исследуемых плёнках переход в сверхпроводящее состояние растянут по температуре. Ширина сверхпроводящего перехода ΔT , определенная как область, в которой сопротивление падает с $0.9 R_{max}$ до $0.1 R_{max}$, $\Delta T = T(0.9R_{max}) - T(0.1R_{max})$ быстро увеличивается с ростом сопротивления в нормальном состоянии. Показано, что наблюдаемый максимум в сопротив-

Рис. 1: (а) Температурные зависимости сопротивления плёнок TiN из табл. 1. Сопротивления нормированы на соответствующее значение в максимуме R_{max} , предшествующем переходу в сверхпроводящее состояние. Сплошные линии — результат расчёта с учётом всех квантовых вкладов в проводимость. Стрелкой указана температура T_c . (б) Зависимость критической температуры сверхпроводящего перехода T_c от сопротивления на квадрат при комнатной температуре R_N . Сплошная линия — теоретическая зависимость, построенная в рамках фермионной модели подавления сверхпроводимости [32], с параметром подгонки $\gamma = \ln[\hbar/(kT_{c0}\tau)] = 5.73$, где $T_{c0} = 3.4 K u \tau = 7.3 \cdot 10^{-15} c$.

лении обусловлен конкуренцией между вкладом от сверхпроводящих флуктуаций (SF), а именно вкладом Маки-Томпсона, и вкладом от слабой локализации и взаимодействия в диффузионном канале (WL+ID). Показано, что температурная зависимость сопротивления R(T) определяется квантовыми вкладами в проводимость от флуктуационных куперовских пар вплоть до области, где сопротивление убывает максимально быстро, то есть производная dR/dT(T) достигает максимума. Величина dR/dT(T) максимальна при $R \simeq 0.2R_{max}$, таким образом основная часть падения сопротивления лежит во флуктуационной области сверхпроводящего перехода.

На основании сопоставления экспериментальных и теоретических зависимостей R(T) определены критические температуры сверхпроводящего перехода T_c для исследуемых плёнок. Выполнено сравнение значений T_c , определённых с учётом все квантовых вкладов в проводимость от сверхпроводящих флуктуаций, со значениями T_c , определёнными с учётом только вклада Асламазова-Ларкина. Показано, что учёт только вклада Асламазова-Ларкина приводит к завышенному значению T_c .

Обсуждаемые результаты представлены в работах [А1, А2].

<u>В третьей части</u> обсуждается подавление температуры сверхпроводящего перехода T_c с ростом беспорядка.

Наблюдается уменьшение критической температуры T_c с ростом удельного сопротивления квадрата плёнок $R = 1/(\sigma \cdot d)$ (сопротивление на квадрат) в нормальном состоянии (рис. 1 б). В качестве характеристики системы выбрано именно сопротивление на квадрат, а не толщина или концентрация носителей, поскольку, как было обнаружено в работе [31], T_c намного лучше коррелирует с удельным сопротивлением плёнки

$$R = \frac{3\pi^2\hbar}{e^2k_F^2ld},\tag{1}$$

чем с толщиной пленки d или ее объемным удельным сопротивлением $1/\sigma$ и, следовательно, именно сопротивление на квадрат служит мерой беспорядка в пленке. Показано, что поведение зависимости $T_c(R_N)$ количественно согласуется с поведением $T_c(R_N)$, предсказанным в рамках фермионной модели подавления сверхпроводимости [32].

Обсуждаемые результаты представлены в работе [А6].

В пятой главе (Вихревой переход Березинского-Костерлица-Таулесса) представлены результаты исследования вихревого транспорта в линейном и нелинейном режиме. Обсуждается влияние эффекта разогрева электронов на вид вольтамперных характеристик.

<u>В первой части</u> (Проверка условий применимости теории БКТ) приведена оценка наиболее важных сверхпроводящих параметров плёнок TiN, таких как глубина проникновения магнитного поля, длина когерентности и другие. Показано, что исследуемые образцы удовлетворяют всем требованиям применимости теории Березинского-Костерлица-Таулесса.

<u>Во второй части</u> (Вихревой транспорт в линейном режиме) приводится анализ температурных зависимостей сопротивления при $T < T_c$. Показано, что ниже T_c сопротивление остается конечным из-за движения свободных вихрей и антивихрей под действием постоянного тока. Показано, что несмотря на конечные размеры исследуемых образцов и некоторую пространственную неоднородность сверхпроводящих свойств [33], всё поведение R(T) вблизи сверхпроводящего перехода при $T < T_c$ полностью описывается теорией вихревого перехода Березинского-Костерлица-Таулесса. Определена температура перехода $T_{вкт}$. Показано, что $T_{вкт}$ убывает с ростом удельного сопротивления плёнки в нормальном состоянии.

Обсуждаемые результаты представлены в работе [А5].

<u>Третья часть</u> (Неравновесный транспорт вблизи сверхпроводящего перехода) посвящена установлению механизмов, лежащих в основе сильно нелинейного поведения экспериментальных вольтамперных характеристик. Третья часть состоит из трех пунктов.

<u>В первом пункте</u> (Критический ток и гистерезис вольтамперных характеристик) приводятся вольтамперные характеристики плёнок, измеренные при различных базовых температурах. Показано, что при понижении температуры характер V(I) меняется от омического к существенно нелинейному (рис. 2 а) — при некотором токе наблюдается скачок напряжения, что отражается в появлении максимумов на зависимости дифференциального сопротивления от тока dV/dI(I). Плотность тока j_m определяется через величину тока I_m , где $I_m^-(I_m^+)$ — ток, при котором наблюдается максимум в dV/dI при убывании тока до 0 (от 0). Показано, что для всех плёнок значение j_m^+ существенно меньше теоретической величины плотности тока распаривания.

15

Рис. 2: (а) Экспериментальные вольтамперные характеристики V(I) в линейном масштабе для образца $R_N = 2520 \text{ Ом} (T_c = 1.29 \text{ K})$. По оси абсцисс отложена величина модуля тока |I|. Стрелками обозначены скачки напряжения при возрастании тока от 0 (\uparrow) и при убывании тока до 0 (\downarrow). Для каждой кривой V-I указана температура криостата, при которой измерялась данная зависимость. (б) Температурные зависимости плотностей критических токов j_m^+ (закрашенные символы) и j_m^- (пустые символы). Символы соединены линиями для наглядности. Вертикальными линиями обозначены температуры $T_{\rm EKT}^{\rm RT}$ (сплошные линии) и T_c (штриховые линии). Чтобы не загромождать рисунок приведены зависимости только для трех образцов толщиной $R_N = 2520 \text{ Ом},$ $R_N = 855 \text{ Ом и } R_N = 215 \text{ Ом}.$

При температурах $T < (0.8 \div 0.9)T_c$ на зависимостях V(I) наблюдается гистерезис по току (рис. 2 а, б). Показано, что характер вольтамперных характеристик V(I) меняется при температуре топологического перехода Березинского-Костерлица-Таулесса: при $T < T_{\rm БКТ}$ появляется гистерезис по току в V(I), тогда как при $T > T_{\rm БКТ}$ гистерезис отсутствует. Показано, что гистерезис V(I) обусловлен тепловой бистабильностью системы. При токах $I_m^- < I < I_m^+$ в системе существует два устойчивых состояния — "горячее" (нормальное) и "холодное" (сверхпроводящее). Состояние, в котором находится система зависит от направления изменения тока: от I = 0 — холодное состояние, к I = 0 — горячее.

Обсуждаемые результаты представлены в работах [А4, А5].

Во втором пункте (Переход Березиского-Костерлица-Таулесса) приведен анализ вольтамперных характеристик при малом токе, возрастающем от I = 0, при температурах $T \leq T_c$ (рис. 3 а).

Показано, что степенной характер вольтамперных характеристик при токах

ниже критического тока I_m^+ и малых напряжениях обусловлен разрывом пар вихрь-антивихрь. Показано, что температура $T_{\rm БKT}$, определенная из анализа V(I)по критерию $\alpha = 3$ (рис. 3 г), практически совпадает с $T_{\rm БKT}$, определенной из R(T)— различие составляет $\approx 1\%$.

Обсуждаемые результаты представлены в работах [А3, А5].

<u>Третий пункт</u> (Разогрев электронного газа при $T \gtrsim T_c$) посвящен анализу нелинейных вольтамперных характеристик, измеренных во флуктуационной и резистивной области сверхпроводящего перехода.

Показано, что степенные участки $V \propto I^{\alpha}$ наблюдаются и при достаточно высоких температурах, когда система находится в резистивном состоянии (рис. 3 б). Соответствующий показатель степени α_R , с возрастанием температуры, плавно без изломов убывает с $\alpha > 3$ до 1 в широком температурном интервале ΔT таком, что интервал ΔT сравним с величиной температуры, при которой $\alpha = 3$ (рис. 3 в).

Рис. 3: (а) Вольтамперные характеристики в двойном логарифмическом масштабе для образца $R_N = 2520$ Ом. Для каждой кривой V(I) указана температура криостата, при которой измерялась данная зависимость, в единицах $t = T/T_c$. Пунктирные линии отвечают функциям $V \propto I^{\alpha}$ с $\alpha = 1$, штриховые линии — $\alpha = 3$. Сплошные красные линии вычислены на основании уравнения теплового баланса. Тенью выделены области, где $\alpha > 1$. (б) Область, выделенная серым на рис. (а). Температурная зависимость показателя степени α : (в) для зависимостей V(I) с рис. (б), сплошная линия вычислена на основании уравнения теплового баланса; (г) для V(I) из области, выделенной желтым на рис. (а).

Показано, что такой вид вольтамперных характеристик обусловлен джоулевым нагревом системы и полностью описывается уравнением теплового баланса [34].

Таким образом, для достоверного детектирования перехода БКТ необходимо наблюдать полную эволюцию ВАХ: степенной участок — скачок при критическом токе — переход в резистивное состояние.

В диссертации показано, что представление экспериментальных зависимостей V(I) в координатах $P = f(T_{el}^5 - T_{ph}^5)$, сразу же отвечает на вопрос об адекватности и границах применимости уравнения теплового баланса к описанию нелинейной проводимости (рис. 4). Так, данные, измеренные при любой t > 1, в этом представлении ложатся на одну прямую линию. Тогда как данные, измеренные при t < 1, в этом представлении при малых токах не ложатся на общую прямую линию. Заметим, что при анализе V(I) с позиции уравнения теплового баланса сама величина T_c не используется. При этом, представление экспериментальных V(I) в координатах $P = f(T_{el}^5 - T_{ph}^5)$ сразу же различает зависимости, измеренные при $T > T_c$ и при $T < T_c$. Следовательно, такое представление V(I) служит независимостимым способом определения T_c .

Рис. 4: Зависимости мощности, выделяемой на образце, от приведенной температуры $T_{ph}^5 - T_{el}^5$, вычисленные из вольтамперных зависимостей V(I), измеренных при различных температурах T_{ph} . Температура измерений приведена в единицах $T_c - t = T_{ph}/T_c$. (a) Результаты для образца $R_N = 2520$ Ом.

Обсуждаемые результаты представлены в работах [А4, А5].

Шестая глава посвящена анализу ширины резистивной области сверхпроводящего перехода в рамках существующих теоретических предсказаний. Показано, что зависимость ширины резистивной области сверхпроводящего перехода $T_{\rm БKT}/T_c$ от сопротивления плёнки в нормальном состоянии R_N описывается универсальной функцией, предложенной Бизли-Моий-Орландо [35].

Обсуждаемые результаты представлены в работах [А2, А5].

В заключении сформулированы основные результаты и выводы диссертационной работы.

ОСНОВНЫЕ РЕЗУЛЬТАТЫ И ВЫВОДЫ:

- 1. Экспериментально исследована проводимость ультратонких плёнок (от 3.6 до 23 нм) нитрида титана вблизи сверхпроводящих переходов: измерены температурные зависимости сопротивления и вольтамперные характеристики плёнок при различных температурах.
- Установлено, что учёт всех квантовых вкладов в проводимость квазидвумерной системы описывает немонотонную температурную зависимость сопротивления вплоть температур, где сопротивление убывает максимально быстро, то есть производная dR/dT достигает максимума. Определена критическая температура сверхпроводящего перехода T_c.
- Показано, что при увеличении сопротивления плёнок в нормальном состоянии происходит уменьшение температуры сверхпроводящего перехода T_c в соответствии с фермионным механизмом подавления сверхпроводимости.
- 4. Показано, что переход плёнок в сверхпроводящее состояние происходит по механизму, описанному теорией топологического фазового перехода Березинского-Костерлица-Таулесса. Переход был зафиксирован двумя независимыми способами: из анализа нелинейных вольтамперных характеристик и из анализа температурных зависимостей сопротивления.
- 5. Установлено, что при температуре топологического перехода Березинского-Костерлица-Таулесса $T_{\rm БКТ}$, меняется характер вольтамперных характеристик V(I): при $T < T_{\rm БКТ}$ появляется гистерезис по току в V(I), тогда как при $T > T_{\rm БКТ}$ гистерезис отсутствует. Показано, что гистерезис вольтамперных характеристик свидетельствует о тепловой бистабильности системы.
- 6. Показано, что степенные участки на V(I) не являются достаточным свидетельством наблюдения перехода Березинского–Костерлица–Таулесса. Для достоверного детектирования перехода БКТ необходимо наблюдать полную эволюцию вольтамперных характеристик: степенной участок — скачок при критическом токе — переход в нормальное состояние.
- Установлено, что наличие степенных участков вольтамперных характеристик V(I) во флуктуационной области сверхпроводящего перехода обусловлено разогревом электронного газа.

 Показано, что ширина резистивной области сверхпроводящего перехода *T*_{вкт}/*T_c* убывает с ростом удельного сопротивления плёнки *R*_□.

Основные результаты диссертации изложены в следующих работах [A1] <u>Постолова С. В.</u>, Миронов А. Ю., Батурина Т. И. Ширина резистивной области перехода в сверхпроводящее состояние плёнки нитрида титана // Вестник НГУ. Серия: Физика. Т. 6, С. 50-56 (2011).

[A2] Baturina T. I., <u>Postolova S. V.</u>, Mironov A. Yu., Glatz A., Baklanov M. R., and Vinokur V. M. Superconducting phase transitions in ultrathin TiN films // Europhysics Letters V. 97, P. 17012- (2012).

[A3] Kalok D., Bilušić A., Baturina T. I., Mironov A. Yu., <u>S. V. Postolova</u>, Gutakovskii A. K., Latyshev A. V., Vinokur V. M., and Strunk C. Non-linear conduction in the critical region of the superconductor-insulator transition in TiN thin films // Journal of Physics: Conference Series (JPCS) V. 400, P. 022042 (2012).

[A4] <u>Постолова С. В.</u>, Миронов А. Ю., Батурина Т. И. Нелинейная проводимость пленок в области перехода в сверхпроводящее состояние // Известия РАН. Серия Физическая Т. 78, С. 8-12 (2014).

[A5] <u>Postolova S. V.</u>, Mironov A. Yu., Baturina T. I. Nonequilibrium Transport near the Superconducting Transition in TiN Films // JETP Letters V. 100, P. 635-641 (2015).

[A6] <u>Postolova S. V.</u>, Mironov A. Yu., Baklanov M. R., Vinokur V. M., and Baturina T. I. Reentrant Resistive Behavior and Dimensional Crossover in Disordered Superconducting TiN Films // Scientific Reports V. 7, P. 1718 (2017).

Цитированная литература

- Shurakov A., Lobanov Y., and Goltsman G. Superconducting hot-electron bolometer: from the discovery of hot-electron phenomena to practical applications // Superc. Sci. Tech. V.29, P.023001 (2016).
- Mermin N. D. Absence of Ordering in Certain Classical Systems // J. Math. Phys. V. 8, P. 1061 (1967); Mermin N. D. Crystalline Order in two dimensions // Phys. Rev. V. 176, P. 250 (1968);
- [3] Березинский В. Л. Разрушение дальнего порядка в одномерных и двумерных системах с непрерывной группой симметрии. І. Классические системы // ЖЭТФ Т. 59, С. 907 (1970).
- [4] Березинский В. Л. Разрушение дальнего порядка в одномерных и двумерных системах с непрерывной группой симметрии. II. Квантовые системы // ЖЭТФ Т. 61, С. 1144 (1971).

- [5] Kosterlitz J. M. and Thouless D. J. Ordering, metastability and phase transitions in twodimensional systems // J. Phys. C: Solid State Phys. V. 6, P. 1181 (1973).
- [6] Kosterlitz J. M. The critical properties of the two-dimensional XY model // J. Phys. C: Solid State Phys. V. 7, P. 1046 (1974).
- [7] Nelson D. R. and Kosterlitz J. M. Universal Jump in the Superfluid Density of Two-Dimensional Superfluids // Phys. Rev. Lett. V. 39, P. 1201, (1977).
- [8] Mondal M. et al. Role of the Vortex-Core Energy on the Berezinskii-Kosterlitz-Thouless Transition in Thin Films of NbN // Phys. Rev. Lett. V. 107, P. 217003 (2011).
- [9] Hebard A.F. and Fiory A.T. Evidence for the Kosterlitz Thouless transition in thin superconducting aluminium films // Phys. Rev. Lett. V. 44, P. 291 (1980).
- [10] Liu W. et al. Dynamical study of phase fluctuations and their critical slowing down in amorphous superconducting films // Phys. Rev. B V. 84, P. 024511 (2011).
- [11] Halperin B. I. and Nelson D. R. Resistive transition in superconducting films // J. Low Temp. Phys. V. 36, P. 599 (1979).
- [12] Pearl J. Current distribution in superconducting films carrying quantized fluxoids // Appl. Phys. Lett. V. 5, P. 65 (1964).
- [13] Goldman A. M. in 40 Years of Berezinskii-Kosterlitz-Thouless Theory. Edited by Jose J.V. World Scientific, 2013.
- [14] Reyren N., Thiel S., Caviglia A. D. et al. Superconducting Interfaces Between Insulating Oxides // Science V. 317, P. 1196 (2007).
- [15] Yuli O. et al. Enhancement of the Superconducting Transition Temperature of La_{2-x}Sr_xCuO₄ Bilayers: Role of Pairing and Phase Stiffness // Phys. Rev. Lett. V. 101, P. 057005 (2008).
- [16] He Q. L., Liu H., He M., et al. Two-dimensional superconductivity at the interface of a Bi₂Te₃/FeTe heterostructure // Nat. Comm. V. 5, P. 4247 (2014)
- [17] Han Y. L., Shen S.-C., You J. et al. Two-dimensional superconductivity at (110) LaAlO₃/SrTiO₃ interfaces // Appl. Phys. Lett. V. 105, P. 192603 (2014).
- [18] Matetskiy A. V. Two-Dimensional Superconductor with a Giant Rashba Effect: One-Atom-Layer Tl-Pb Compound on Si(111) // Phys. Rev. Lett. V. 115, P. 147003 (2015).
- [19] Zhang H.-M. et al. Detection of a Superconducting Phase in a Two-Atom Layer of Hexagonal Ga Film Grown on Semiconducting GaN(0001) // Phys. Rev. Lett. V. 114, P. 107003 (2015).

- [20] Lin Z., Mei C., Wei L. et al. Quasi-two-dimensional superconductivity in FeSe_{0.3}Te_{0.7} thin films and electric-field modulation of superconducting transition // Sci. Rep. V. 5, P. 14133 (2015).
- [21] Tsen A. W., Hunt B., Kim Y. D. et al. Nature of the quantum metal in a two-dimensional crystalline superconductor // Nat. Phys. V. 12, P. 208 (2016).
- [22] Baity P. et al. Effective two-dimensional thickness for the Berezinskii-Kosterlitz-Thouless-like transition in a highly underdoped La_{2-x}Sr_xCuO₄ // Phys. Rev. B V. 93, P. 024519 (2016).
- [23] Medvedeva K., Kim B., and Minnhagen P. Analysis of current-voltage characteristics of twodimensional superconductors // Phys. Rev. B V. 62, P. 14531 (2000).
- [24] Kogan V. G. Interaction of vortices in thin superconducting films and the Berezinskii-Kosterlitz-Thouless transition // Phys. Rev. B V. 75, P. 064514 (2007).
- [25] Гантмахер В.Ф. и Долгополов В.Т. Квантовый фазовый переход сверхпроводникизолятор // УФН Т. 180, С. 3 (2010).
- [26] Altshuler B. L. and Aronov A. G. in *Electron-Electron Interactions in Disordered Systems*. Edited by Efros A. L. and Pollak M. New York.: Elsevier Science, 1985.
- [27] Ларкин А., Варламов А. Теория флуктуаций в сверхпроводниках. М.: Добросвет, 2007.
- [28] Шмидт В. В. Введение в физику сверхпроводников. М.: МЦНМО, 2000.
- [29] Patsalas P., Kalfagiannis N., Kassavetis S. Optical Properties and Plasmonic Performance of Titanium Nitride // Materials V. 8, P. 3128 (2015).
- [30] Kardakova A. et al. The electron-phonon relaxation time in thin superconducting titanium nitride films // Appl. Phys. Lett. V. 103, P. 252602 (2013).
- [31] Strongin M., Thompson R.S., Kammerer O.F., Crow J.E. Destruction of Superconductivity in Disordered Near-Monolayer Films // Phys. Rev. B V. 1, P. 1078 (1970).
- [32] Finkelstein A. Superconducting temperature in amorphous films// JETPL V. 45, P. 46 (1987).
- [33] Sacepe B. et al. Disorder-Induced Inhomogeneities of the Superconducting State Close to the Superconductor-Insulator Transition // Phys. Rev. Lett. V. 101, P. 157006 (2008).
- [34] Wellstood F. C., Urbina C. and Clarke J. Hot electron limitation to the sensitivity of the dc superconducting quantum interference device // Appl. Phys. Lett. V. 54 P. 2599 (1989).
- [35] Beasley M. R., Mooij J. E., and Orlando T. P. Possibility of Vortex-Antivortex Pair Dissociation in Two-Dimensional Superconductors // Phys. Rev. Lett. V. 42, P. 1167 (1979).