На правах рукописи

A

Аксенов Максим Сергеевич

Исследование механизма пассивации поверхности InAs(111)А фторсодержащими анодными слоями

01.04.10 – Физика полупроводников

ΑΒΤΟΡΕΦΕΡΑΤ

диссертации на соискание ученой степени кандидата физико-математических наук

Новосибирск - 2019

Работа выполнена в Федеральном государственном бюджетном учреждении науки Институте физики полупроводников им. А.В. Ржанова Сибирского отделения Российской академии наук (ИФП СО РАН).

Научный руководитель:

Терещенко Олег Евгеньевич, профессор Российской академии наук, доктор физико-математических наук, старший научный сотрудник Федерального государственного бюджетного учреждения науки Института физики полупроводников им. А.В. Ржанова Сибирского отделения Российской академии наук.

Официальные оппоненты:

Окотруб Александр Владимирович, доктор физико-математических наук, профессор, заведующий лабораторией физикохимии наноматериалов Федерального государственного бюджетного учреждения науки Института неорганической химии им. А.В. Николаева Сибирского отделения Российской академии наук,

Лебедев Михаил Вячеславович, кандидат физико-математических наук, старший научный сотрудник лаборатории квантоворазмерных гетероструктур Федерального государственного бюджетного учреждения науки Физикотехнического института им. А.Ф. Иоффе Российской академии наук.

Ведущая организация:

Федеральное государственное бюджетное научное учреждение «Федеральный исследовательский центр «Красноярский научный центр Сибирского отделения Российской академии наук»

Защита состоится «18» июня 2019 г. в 16:30 часов на заседании диссертационного совета Д 003.037.01 на базе Федерального государственного бюджетного учреждения науки Института физики полупроводников им. А.В. Ржанова Сибирского отделения Российской академии наук по адресу: 630090, Новосибирск, проспект академика Лаврентьева, д.13, конференц-зал.

С диссертацией можно ознакомиться в библиотеке и на сайте ИФП СО РАН: <u>https://www.isp.nsc.ru/institut/dissertatsionnyj-sovet/zasedaniya/aksenov-maksim-sergeevich</u>.

Автореферат разослан « » апреля 2019 г.

Ученый секретарь диссертационного совета, доктор физико-математических наук

Погосов Артур Григорьевич

Общая характеристика работы

Актуальность работы.

Арсенид индия (InAs) благодаря прямозонной энергетической структуре и высокой подвижности электронов является перспективными материалом для создания различных современных приборов. В настоящее время InAs находит применение в приемниках инфракрасного излучения, полевых транзисторах и разрабатываемых спиновых транзисторах [1-3]. Достижение предельных параметров приборов на основе InAs, как и для других полупроводников A_3B_5 , обеспечивается решением актуальной задачи формирования границы раздела диэлектрик/ A_3B_5 с низкой плотность электронных состояний (density of interface traps, D_{it}), которая, в отличие от границы раздела SiO₂/Si ($D_{it} < 10^{10}$ эB⁻¹см⁻²), далека от совершенства. Другой, не менее актуальной задачей, является установление механизма формирования совершенной границы раздела диэлектрик/InAs и выяснение природы протекающих на ней электронных процессов, определяемых атомным и электронным строением границы раздела [4].

Многочисленными экспериментальными и теоретическими исследованиями установлено, что основной причиной несовершенства границ раздела диэлектрик/InAs(A₃B₅) являются различного рода дефекты полупроводниковой поверхности и переходного слоя, состоящего из термодинамически и химически не стабильных оксидов элементов полупроводника сложного и нестехиометрического состава [4-9]. Вследствие этого, собственные оксидные слои не обеспечивают пассивацию (уменьшение/устранение D_{it}) поверхности A₃B₅. Стоит также отметить, что данные слои обладают низкой химической стойкостью и не обеспечивают защиту поверхности полупроводников A₃B₅ при изготовлении и эксплуатации приборных структур. В МДП-структурах на основе InAs наличие собственного оксидного слоя на границе раздела с диэлектриком приводит к полному или частичному закреплению уровня Ферми (D_{it}>10¹² эВ⁻¹см⁻²), большой плотности ловушек заряда в переходном слое (>10¹² см⁻²), значительному гистерезису и частотной дисперсии вольтфарадных характеристик (ВФХ).

Для уменьшения D_{it} разработаны и разрабатываются различные методы пассивации InAs [4, 5, 10], основанные на полном удалении собственных оксидов с поверхности с последующим созданием защитных слоев из других материалов или модификацией оксидного слоя перед осаждением химически инертного диэлектрического слоя.

При использовании анодного окисления поверхности InAs в щелочном фторсодержащем электролите перед осаждением слоя двуокиси кремния, синтезированного в реакторе пониженного давления при температуре 220° С, в In₂O₃/SiO₂/InAs MДП-структурах достигнута величина D_{it}<5·10¹⁰ эB⁻¹см⁻² при 77К [11, 12]. Показано, что снижение плотности состояний на границе раздела SiO₂/InAs сопровождается образованием оксифторидов индия и мышьяка в анодном оксиде (AO). Данный способ формирования границы раздела SiO₂/InAs использован для создания фотоприёмного устройства инфракрасного диапазона на основе тепловизионной ПЗИ-матрицы с разрешением до 7мК для медицинских и научных применений [3].

Несмотря на обнаружение эффекта пассивации поверхности InAs фторсодержащим анодным оксидом (ФАО) к началу настоящей работы причины снижения D_{it} не установлены. Не изучено влияние концентрации фторсодержащего реагента в окислительной среде на изменение физико-химических и электронных свойств границы раздела собственный оксид/InAs. Отсутствуют данные о влиянии фтора на атомное строение и электронные свойства границы раздела оксид/InAs.

Цель диссертационной работы состояла в установлении механизма пассивации границы раздела собственный оксид/InAs фтором.

Для реализации данной цели были поставлены и решены следующие задачи:

1. Разработать метод сухого анодного окисления InAs в низкоэнергетической таунсендовской газоразрядной плазме смеси газов Ar, O₂, CF₄, кото-

рый позволяет выращивать однородные анодные слои при комнатной температуре;

2. Изучить влияние количества фторсодержащего реагента в различных окислительных средах:

- на спектр интерфейсных состояний на границе раздела анодный оксид/InAs(111)A,

- на морфологию границы раздела анодный оксид/InAs(111)А,

- на химический состав границы анодный оксид/InAs(111)А;

3. Изучить влияние количества фтора на атомную и электронную структуру, а также зарядовое состояние атомов границы раздела анодный оксид/InAs.

Методология и методы исследования

Объектом исследования являлась граница раздела анодный оксид/InAs(111)A, сформированная двумя методами:

 сухим окислением при комнатной температуре в низкоэнергетической таунсендовской газоразрядной плазме в среде Ar, O₂ с различным содержанием CF₄;

 электролитическим окислением при комнатной температуре в двухэлектродной ячейке в «кислотном» (H₃PO₄:изопропанол:глицерин=5:65:30, pH=1.5) и «щелочном» (NH₄OH:этиленгликоль=1:5, pH=11.5) электролитах с различным содержанием NH₄F.

Для решения поставленных в работе задач различными современными экспериментальными и теоретическими **методами** комплексно изучены электронные и физико-химические свойства границ раздела AO(ФАО)/InAs(111)A. Спектры интерфейсных состояний на границах раздела AO(ФАО)/InAs(111)A. Спектры интерфейсных состояний на границах раздела AO(ФАО)/InAs рассчитывались методом Термана на основе анализа высокочастотных ВФХ Au/AO(ФАО)/InAs(111)A МОП-структур при 77 К. Морфология поверхности InAs и границ раздела AO(ФАО)/InAs изучалась методами атомно-силовой микроскопии (ACM) и высокоразрешающей электронной микроскопии (ВРЭМ), соответственно. При анализе состава анодного слоя использовался метод рентгеновской фотоэлектронной спектроскопии (РФЭС). Изучение влияния количества фтора на электронную и атомную структуру границы раздела анодный оксид/InAs проводилось квантово-химическими расчетами совместной адсорбции (коадсорбции) кислорода и фтора на нереконструированную поверхность InAs(111)A-(1x1) в рамках теории функционала плотности методом проекционных присоединенных волн (PAW), реализованным программным комплексом Vienna Ab-initio Simulation Package (VASP), как со стандартным обобщенным градиентным приближением (GGA) для обменно-корреляционного функционала, так и с использованием метода гибридных функционалов в виде HSE06.

Научная новизна

1. Разработан метод анодного окисления поверхности InAs в таунсендовской газоразрядной плазме смеси Ar, O₂ и CF₄. Определены условия, обеспечивающие однородное горение плазмы по площади в процессе окисления при минимальной энергии ионов вблизи анода. Получены кинетические зависимости роста анодных слоев для различных соотношений CF₄/O₂.

 Установлена количественная зависимость между плотностью интерфейсных состояний на границе раздела анодный оксид/InAs(111)А и концентрацией фторсодержащего реагента для электролитического и плазмохимического методов окисления.

3. Изучены структурно-морфологические особенности границ раздела анодный оксид/InAs в зависимости от состава окислительной среды и концентрации фторсодержащего реагента.

4. Определены закономерности изменения профиля элементного состава фторсодержащих анодных оксидов в зависимости от состава окислительной среды и концентрации фторсодержащего реагента. Установлен вид пространственного профиля распределения фтора в оксиде. Показано, что электролитическое окислением InAs в кислотном электролите с соотношением F/O>>1 формирует бескислородную границу раздела фторсодержащий анодный оксид/InAs(111)A.

5. Установлены корреляционные зависимости между изменениями химического состава, морфологии и плотности интерфейсных состояний границы раздела анодный оксид/InAs(111)А при фторировании.

6. Предложена модель атомного строения границы раздела фторсодержащий анодный оксид/InAs с низкой плотностью интерфейсных состояний. Установлена взаимосвязь между появлением (устранением) состояний на границе раздела собственный оксид/InAs и зарядовым состоянием атомов на границе раздела, которое определяется образующимися химическими связями.

Практическая значимость

Разработанный метод плазмохимического окисления поверхности InAs может быть использован для окисления (фторирования) поверхности других полупроводников A_3B_5 и материалов. По сравнению с электролитическим окислением, использование этого метода не требует трудоемкого и сложного процесса подбора состава окислительной среды, определяемого физикохимическими свойствами полупроводника. Более того, не требуется разработка и проведение процесса удаления остатков окислительной среды после процесса окисления. Использование в данном методе одной и той же газовой среды для окисления различных полупроводников позволяет проводить пассивацию боковых стенкок меза-структур, сформированных на многослойных полупроводниковых гетероэпитаксиальных структурах A_3B_5 различного состава.

Научные положения, выносимые на защиту:

1. Окисление в низкоэнергетической таунсендовской газоразрядной плазме смеси газов Ar, O₂ и CF₄ обеспечивает формирование границы раздела фторсодержащий анодный оксид/InAs(111)A с минимальной плотностью интерфейсных состояний 5·10¹⁰ эB⁻¹см⁻².

2. На границе раздела анодный оксид/InAs(111)А присутствует структурно упорядоченный переходной слой, межплоскостные расстояния в котором на 0.2-0.7 Å меньше, чем в объеме InAs. Фторирование анодного оксида приводит к увеличению межплоскостных расстояний в переходном слое до значений близких к объему InAs.

 Снижение плотности интерфейсных состояний на границе раздела анодный оксид/InAs при фторировании обусловлено замещением кислорода фтором и увеличением положительного заряда атомов мышьяка при образовании оксифторидов.

Степень достоверности и апробация результатов

Достоверность полученных данных и выдвигаемых на защиту научных положений обеспечивается использованием современных методов исследования физико-химических свойств и электрофизических параметров границы раздела AO(ФAO)/InAs, корреляцией рассчитанных теоретически изменений атомных и электронных структур поверхности InAs(111)А при коадсорбции кислорода и фтора с полученными экспериментальными данными, а также воспроизводимостью полученных результатов.

Основные результаты работы докладывались и обсуждались на 12-ой (Чехия, 2011) и 14-ой (Республика Корея, 2013) международных конференциях по вопросам формирования полупроводниковых интерфейсов (ICFSI), конференции по актуальным проблемам физики полупроводниковых структур, посвящённые 50-летию образования ИФП СО РАН (Новосибирск, 2014), на VI-й Всероссийской конференции молодых ученых «Микро-, нанотехнологии и их применение» им. Ю.В. Дубровского (Черноголовка, 2014), на Японско-Российском семинаре «Современные процессы синтеза материалов и наноструктур» (Сендай, Япония, 2015), на XII-й Российской конференции по физике полупроводников (Звенигород, 2015), на научных семинарах ИФП СО РАН.

Публикации. По теме диссертации опубликовано 7 научных статьей [A1-A7] в рецензируемых журналах, индексируемых в базах данных РИНЦ, Web of Science и Scopus, 12 тезисов в трудах российских и международных конференций, получен 1 патент на изобретение [A8].

Личный вклад автора заключался в активном участии в постановке целей и задач исследования, планировании экспериментов, изготовлении и изучении образцов, а также анализе и обобщении полученных результатов.

Автором был разработан метод формирования границы фторсодержащий анодный оксид/InAs сухим окислением в плазме таунсендовского разряда, проводились измерения ВФХ МОП-структур и расчет спектров D_{it}, измерения и анализ РФЭ-спектров, анализ АСМ, ВРЭМ данных и результатов квантовохимических расчетов атомной и электронной структуры InAs с адсорбатами.

Структура и объем диссертации. Диссертация состоит из введения, пяти глав и заключения. Работа изложена на 155 страницах и включает 79 рисунков и 5 таблиц. Список цитируемой литературы содержит 147 ссылок.

Основное содержание работы

Во введении обоснована актуальность диссертационной работы, сформулирована цель проводимых исследований, аргументирована научная новизна и практическая значимость полученных результатов, изложены выносимые на защиту научные положения.

В первой главе обсуждаются основные задачи, которые должны решаться в рамках процессов пассивации поверхности полупроводников InAs (A₃As) для формирования границ раздела с диэлектриками с низкой плотностью интерфейсных состояний. Проведен сравнительный обзор существующих способов подготовки и пассивации поверхности InAs при формировании МДП-структур на его основе. Заключительные параграфы главы посвящены описанию современных теоретических моделей электронных состояний на границах раздела диэлектрик(оксид)/InAs, а также подходов к моделированию атомных и электронных свойств данных границ раздела.

Во второй главе дано описание характеристик используемых слоев InAs(111)A, процессов предварительной химической подготовки и метода анодного окисления поверхности InAs в электролитах. Изложены основные принципы методов исследования физико-химических свойств АО(ФАО) и границ раздела АО(ФАО)/InAs(111)A: АСМ, ВРЭМ, РФЭС и сканирующая эллипсометрия. Описаны методики формирования и измерения иммитанса InAs МОП-структур с тонкими анодными слоями (5-20 нм) в качестве диэлектрика. Приведено описание методик расчета теоретических ВФХ [А4] и плот-

ности интерфейсных состояний. Заключительный параграф главы посвящен описанию методики расчета атомной и электронной структуры нереконструированной (1х1) поверхности InAs (111)А при взаимодействии с адсорбатами.

В третьей главе дано описание разработанного сухого плазмохимического метода анодного окисления поверхности InAs в низкоэнергетической таунсендовской газоразрядной плазме (ТГП) смеси газов Ar, O₂, CF₄. [A3, A8]. Принципиальная схема окисления в ТГП с визуальным контролем через прозрачный катод представлена на рисунке 1 (а). Для определения режима наиболее однородного горения, исследовался процесс зажигания разряда в зависимости от давления газовой смеси (p=0.6-30 торр) при фиксированном

Рисунок 1. Схема анодного окисления в ТГП (а). Кривые Пашена (б) для Ar (1), Ar: O_2 :=4:1 (2), Ar: O_2 :CF₄=3:2:1 (3). Вставка демонстирует BAX разряда для газовой смеси Ar: O_2 :CF₄=3:2:1. Распределения интенсивности горения разряда для смеси Ar: O_2 :CF₄=3:2:1 (в) и толщины оксида, сформированного в данном разряде (г), а также их соответствующие профили (д).

межэлектродном расстоянии (d=0.3 см). Параллельно исследовались зависимости напряжения на электродах в момент зажигания от параметра p·d (кривые Пашена). На рисунке 1 (б) представлены экспериментальные кривые Пашена для трех различных газовых смесей. Установлено, что наиболее однородное горение (рисунок 1 в) наблюдается в минимуме кривых Пашена (p·d=0.2-0.4 торр·см), который также соответствует минимальной энергии ионов плазмы вблизи анода. Представленная на вставке рисунка 1 (б) вольтамперная характеристика разряда демонстрирует таунсендовский режим горения, энергия ионов в котором обычно не превышает нескольких электронвольт [A3].

Методом АСМ показано, что окисление в ТГП при оптимальных режимах не влияет на морфологию поверхности InAs, сохраняя шероховатость (rms) на террасах на уровне 0.2-0.5 нм [A3]. Методами сканирующей эллипсометрии и РФЭС показано, что полученные плазменные анодные слои обладают высокой латеральной однородностью по толщине, показателю преломления и химическому составу. Получены кинетические зависимости роста анодных слоев для различных соотношений CF₄/O₂.

В четвертой главе изложены основные результаты исследования электронных и физико-химических свойств границ раздела AO(ФАО)/InAs(111)A, сформированных методами электролитического и плазмохимического анодного окисления. На рисунке 2 (a) на примере АО, сформированного в кислот-(КЭ), представлены ном электролите типичные частотные BΦX Au/AO/InAs(111)А МОП-структур, без фтора (1) и с добавлением фтора в окислительную среду (2) при 77 К. Пунктирными линиями на рисунке 2 (a) представлены идеальные высокочастотные ВФХ, сдвинутые на соответствующие напряжения плоских зон (V_{FB}). Видно, что окисление во фторсодержащей среде приводит к устранению частотной дисперсии, а также уменьшению величины D_{it}, что выражается в практически полном совпадении с идеальной ВФХ (рисунок 2 a, кривая 2) [A1, A2]. Спектры D_{it} для границ раздела AO(Φ AO)/InAs, сформированных в КЭ и ТГП, представлены на рисунке 2 (б) и (в), соответственно. Анализ спектров D_{it} показал, что введение фторсодер-

Рисунок 2. Частотные $B\Phi X$ (а) и спектры D_{it} (б) Au/AO/InAs(111)A МОПструктур с AO, сформированным в $K \ni$ с концентрацией NH_4F 0 г/л (1) и 15 г/л (2). Спектры D_{it} Au/AO/InAs(111)A МОП-структур с AO, сформированным в $T\Gamma\Pi$ (в) без CF_4 (1) и с добавлением 10% CF_4 (2).

жащих реагентов (начиная с 0.1-0.5 г/л NH₄F или 3-5% CF₄) в состав окислительных сред приводит к уменьшению плотности интерфейсных состояний (77 K) на границе раздела анодный оксид/InAs(111)A по всей ширине запрещенной зоны более чем на порядок: до минимальных значений равных (2-5)·10¹⁰ эB⁻¹см⁻² [A1-A3]. Также показано, что данный результат не зависит от толщины ФАО в пределах 4-20 нм [A4].

Изучение морфологии границы раздела АО(ФАО)/InAs методом высокоразрешающей электронной микроскопии показало (рисунок 3 а-в, столбец слева), что, независимо от способа окисления и состава окислительной среды, между кристаллической поверхностью InAs и аморфной оксидной пленкой наблюдается упорядоченный переходной слой (ПС) [A6]. Анализ гистограмм оптической плотности (латеральное усреднение), полученных из ВРЭМизображений, показал, что межплоскостные расстояния переходного слоя могут значительно отличаться от расстояния между плоскостями в направлении (111) в объеме InAs (3.5 Å) и зависят от количества фтора для обоих методов (рисунок 3 а-в, столбец справа). Изменение межплоскостных расстояний по толщине ПС с увеличением соотношения фтор/кислород в окислительных средах (слоях) показано на рисунке 3 (г, д).

Установлено, что для АО, сформированного без добавления фтора, межплоскостные расстояния в ПС на 0.2-0.7 Å меньше, чем в объеме InAs, а его ширина не превышает 2-3 монослоев (рисунок 3 г-д, кривые 1). При мини-

Рисунок 3. ВРЭМ-изображения поперечного среза (слева) и соответствующие гистограммы оптической плотности (справа) границ раздела $AO(\Phi AO)/InAs(111)A$, сформированных в щелочном электролите (ЩЭ) с концентрацией NH₄F 0 г/л (а) и 24 г/л (б), а также в ТГП с соотношением $O_2/CF_4=0.5$ (в). Изменение межплоскостных расстояний в переходном слое на границе раздела $AO(\Phi AO)/InAs(111)A$, сформированных в ЩЭ (кривые 1,4) и КЭ (кривые 1-3) с различным содержанием NH₄F (г), а также в ТГП с различным соотношением O_2/CF_4 (д).

мальной концентрации фтора, когда наблюдается резкое снижение D_{it}, происходит увеличение всех межплоскостных расстояний в ПС до значений близких к объему InAs (рисунок 3 г-д, кривые 2). Дальнейшее увеличение концентрации фторирующего реагента приводит к увеличению только ближайшего к объему InAs межплоскостного расстояния на 0.2-0.3 Å (рисунок 3 г-д, кривые 3-4). Фторирование также увеличивает ширину переходного слоя на 1-3 монослоя по сравнению с переходным слоем на границе раздела AO/InAs.

Для изучения влияния количества фтора на изменение состава анодных слоев вблизи границы раздела с InAs проводился анализ РФЭ-спектров линий

In 4d, As 3d, O 1*s*, F 1s при послойном травлении ионами Ar⁺ (энергией ионов 1.2 кэВ, плотность тока 2 мкА/см²) пленок толщиной 10-15 нм, выращенных при различной концентрации фторирующего реагента.

Анализ РФЭС данных показал, что, не зависимо от метода окисления, анодные слои, выращенные в средах без фтора, состоят из трехвалентных оксидов индия и мышьяка (In_2O_3 , As_2O_3) равномерно распределенных по толщине со стехиометрическим соотношением близким к единице (рисунок 4 а) [A2, A3, A6].

Окисление в присутствии фтора приводит к его накоплению в анодном слое с колоколообразным профилем распределения за счет замещения кислорода и образованию оксифторидов индия и мышьяка ($In_xO_yF_z$, $As_xO_yF_z$) с различным по толщине соотношением O/F (рисунок 4 б) [A2, A6]. С увеличением концентрации фторсодержащих реагентов происходит увеличение соотношения O/F в объеме фторсодержащих слоев и на границе раздела ФАО/InAs. При высоких концентрациях фтора происходит полное замещение кислорода фтором на границе раздела (рисунок 4 в). Бескислородная граница раздела состоит в основном из индия, мышьяка и фтора в соотношении 1:1:3. Наблюдаемые химические сдвиги элементов [A2] и их концентрации указывают на то, что бескислородная граница раздела состоит из фторида индия (InF_x , $x\approx3$) и мышьяка в соотношении 1:1. Это соответствуют ВРЭМ-данным (рисунок

Рисунок 4. Профили изменения состава анодных слоев (10-15 нм), выращенных на поверхности InAs(111)A в КЭ с концентрацией NH₄F 0 г/л (а), 2.5 г/л (б) и 15 г/л (в). Погрешность в определении концентрации элементов составляет ±10% от значения.

3 г-д, кривые 4), согласно которым первое межплоскостное расстояние на границе раздела Φ AO/InAs данного состава близко к постоянной решетки кристаллического InF₃ (d_{012} =3.8 Å).

Сопоставление полученных экспериментальных результатов изменения электронных свойств, химического состава и морфологии границ раздела AO(ФАО)/InAs, показывает, что уменьшение D_{it} связано с образованием оксифторидов индия и

Рисунок 5. Зависимость значений D_{it} вблизи E_F от концентрации NH₄F в КЭ (1) и CF₄ в ТГП (2) в сопоставлении с химическим составом границы раздела AO(ФAO)/InAs.

мышьяка с различным соотношением O/F (рисунок 5), формирующих упорядоченный переходной слой шириной 4-5 монослоев (рисунок 3 г-д).

В пятой главе изложены основные результаты моделирования атомной и электронной структуры нереконструированной поверхности InAs(111)A-(1×1) при адсорбции и коадсорбции кислорода и фтора в рамках теории функционала электронной плотности.¹ [A5, A6], которое проводилось с целью выяснения микроскопической природы механизма устранения поверхностных состояний на границе раздела анодный (собственный) оксид/InAs при фторировании. При моделировании использовались наиболее энергетически выгодные позиции адсорбции: между и над атомами индия для кислорода и фтора, соответственно.

Показано, что адсорбция кислорода на поверхность InAs(111)A-(1×1) индуцирует появление электронных состояний в запрещенной зоне, структура которых зависит от позиции кислорода на поверхности и количества адсорбированных атомов [А5]. Наведенные при адсорбции одного атома кислорода

¹Расчеты проводились сотрудниками Института физики прочности и материаловедения СО РАН (г. Томск) д.ф.-м.н. Кульковой С.Е. и к.ф.-м.н. Бакулиным А.В.

поверхностные состояния (рисунок 6 а) обусловлены сильной гибридизацией орбиталей кислорода и подповерхностного мышьяка. Данные состояния в запрещенной зоне (Г-точка), в основном, локализованы на подповерхностных атомах мышьяка (рисунок 6 а, нижняя панель).

Поверхностные состояния, индуцированные адсорбцией кислорода, частично удаляются (выталкиваются) из запрещенной зоны при последующей адсорбции одного атома фтора (F/O=1) при образовании связи с атомами индия, вовлеченными во взаимодействие с кислородом. При увеличении количества атомов фтора на атоме индия до 3-х (F/O=3) наблюдаются значительные структурные изменения в приповерхностных слоях InAs за счет проникновения в них как кислорода, так и атомов фтора. Это приводит к существенному увеличению расстояния между атомами полупроводника при разрыве In-As

Рисунок 6. Атомная (верхняя панель) и электронная (нижняя панель) структура поверхности InAs(111)-(1×1) при адсорбции одного атома кислорода (а) и коадсорбции кислорода и трех атомов фтора в различных последовательностях (б, в). Цвет кружков на электронной структуре соответствует цвету атомов, на которых локализованы состояния: красный, голубой, черный, желтый соответствуют атомам O, F, In1, As2, где 1-2 номер слоя от поверхности. Размер кружка показывает степень локализации.

связей и образованию связей In-O-As и In-F-As (рисунок 6 б, в, верхняя панель), что хорошо согласуется с экспериментальными данными ВРЭМ (рисунок 3), демонстрирующими увеличение межплоскостных расстояний в переходном слое при фторировании границы раздела собственный оксид/InAs. При этом наведенные кислородом поверхностные состояния полностью удаляются из запрещенной зоны (рисунок 6 б, в, нижняя панель), что коррелирует с экспериментально наблюдаемым уменьшением D_{it} в ФАО (рисунок 5).

Важно отметить, что изменение последовательности адсорбции атомов кислорода и фтора при сохранении соотношения F/O=3 существенно не влияет на вид электронных энергетических спектров приповерхностных атомов InAs, не смотря на различие полученных атомных структур (рисунок 6 б, в) [A6]. Данные атомные структуры можно рассматривать как модель границы раздела фторсодержащий анодный оксид/InAs(111)A с низкой плотностью интерфейсных состояний, где атомы индия третьего слоя (под кислородом или фтором) являются поверхностными атомами полупроводника, а структуры над атомами кислорода или фтора – атомными структурами прилежащего к поверхности InAs упорядоченного фторсодержащего переходного слоя.

Для полученных атомных структур, описывающих границу раздела AO/InAs (кислород/InAs) и ФAO/InAs (фтор-кислород/InAs) был проведен анализ зарядового состояния атомов InAs при взаимодействии с кислородом и фтором (рисунок 7), проведенный по методу Бадера [A5, A6]. Изменения разности зарядовой плотности атомов при адсорбции одного атома кислорода на поверхность InAs (111)A-(1x1) показывают, что появление состояний в запрещенной зоне полупроводника связано с переносом отрицательного заряда на кислород и его локализацией на связи In-As (рисунок 7 а, синяя область). Это приводит к увеличению положительного заряда атомов мышьяка подповерхностного слоя полупроводника (As2-InAs) до -0.06e (рисунок 7 а, зеленая область), в то время как заряд атомов мышьяка в объеме InAs равен -0.63e. Заряд на поверхностных атомах индия (In1-InAs) при этом увеличивается незначительно (до +0.87e).

Рисунок 7. Распределение разности зарядовой плотности в приповерхностной области InAs(111)A при адсорбции одного атома кислорода (а) и коадсорбции кислорода и трех атомов фтора (б). Области аккумуляции электронов и их ухода показаны изоповерхностями синего (слева) и зеленого (справа) цветов, соответственно.

На фторированной границе раздела кислород/InAs, отрицательный заряд накапливается на атомах кислорода и фтора (рисунок 7 б, синие области). При этом устранение (выталкивание в разрешенные зоны) индуцированных кислородом состояний обусловлено образованием фтором связей с атомами мышьяка в ФАО, образующими границу раздела с InAs, что приводит к увеличению их положительного заряда до +1.2e (рисунок 7 б, зеленая область) [A5, A6]. Полученный результат хорошо согласуется с данными РФЭС, согласно которым накопление фтора в анодном оксиде сопровождается сдвигом компоненты окисленного мышьяка линии As 3d в сторону больших значений энергии связи, что связано с образованием связей As-F [A2]. В заключении сформулированы основные результаты и выводы работы:

 Разработан метод сухого анодного окисления InAs в таунсендовской газоразрядной плазме в среде Ar, O₂, CF₄ при комнатной температуре, обеспечивающий высокую однородность толщины и состава тонких (до 20 нм) анодных слоев по площади без нарушения морфологии поверхности полупроводника.

2) Показано, что введение фторсодержащих реагентов в состав окислительных сред приводит к уменьшению плотности интерфейсных состояний (77 К) на границе раздела анодный оксид/InAs(111)А по всей ширине запрещенной зоны более чем на порядок до минимальных значений равных (2-5) 10¹⁰ эВ⁻¹см⁻² не зависимо от толщины фторсодержащего оксида в пределах 4-20 нм.

3) Обнаружено, что на границе раздела анодный оксид/InAs(111)A присутствует структурно упорядоченный переходной слой. Установлено, что фторирование анодного оксида приводит к увеличению межплоскостных расстояний в переходном слое на 0.2-0.7 Å до значений близких к объему InAs, а также его ширины на 1-3 монослоя.

4) Показано, что при фторировании в анодном оксиде происходит замещение кислорода фтором и образование оксифторидов индия $(In_xO_yF_z)$ и мышьяка $(As_xO_yF_z)$ с соотношением O/F, зависящим от состава окислительной среды (способа окисления) и концентрации фторсодержащего реагента. Установлено, что пространственное распределение фтора в анодных слоях имеет колоколообразный вид с максимумом вблизи середины слоя. Обнаружено, что при формировании анодного оксида в кислотном электролите с концентрацией NH₄F 15 г/л формируется бескислородная граница раздела фторсодержащей анодный оксид/InAs(111)A.

5) Установлено, что уменьшение плотности интерфейсных состояний на границе раздела анодный оксид/InAs(111)А при фторировании связано с образованием оксифторидов (фторидов) индия и оксифторидов мышьяка,

формирующих широкий (4-5 монослоев) ненапряженный упорядоченный переходного слой.

 Предложена модель границы раздела фторсодержащий анодный оксид/InAs(111)А с низкой плотностью интерфейсных состояний, согласно которой:

a) устранение индуцированных кислородом состояний в запрещенной зоне на границе раздела собственный оксид/InAs при фторировании происходит за счет образования связей As-F на границе раздела, что приводит к увеличению положительного заряда атомов мышьяка,

б) увеличение межплоскостного расстояния на границе раздела фторсодержащий упорядоченный переходной слой/InAs связано со встраиванием атомов кислорода и/или фтора между анодным слоем и полупроводником с образованием связей As-O(F)-In,

что хорошо согласуется с экспериментальными данными.

Список основных публикаций по теме диссертации

- А1. Влияние фтора на электрофизические свойства границы раздела анодный оксид/InAs(111)А / М.С. Аксенов, Н.А. Валишева, Т.А. Левцова, О.Е. Терещенко // Физика и техника полупроводников. 2014. Т. 48. С. 322-326.
- A2. Oxide-free InAs(111)A interface in metal-oxide-semiconductor structure with very low density of states prepared by anodic oxidation / N.A. Valisheva, M.S. Aksenov, V.A. Golyashov, T.A. Levtsova, A.P. Kovchavtsev, A.K. Gutakovskii, S.E. Khandarkhaeva, A.V. Kalinkin, I.P. Prosvirin, V.I. Bukhtiyarov, O.E. Tereshchenko // Appl. Phys. Lett. 2014. Vol. 105. P. 161601.
- A3. InAs-based metal-oxide-semiconductor structure formation in low-energy Townsend discharge / M.S. Aksenov, A.Yu. Kokhanovskii, P.A. Polovodov, S.F. Devyatova, V.A. Golyashov, A.S. Kozhukhov, I.P. Prosvirin, S.E. Khandarkhaeva, A.K. Gutakovskii, N.A. Valisheva, O. E. Tereshchenko // Appl. Phys. Lett. – 2015. – Vol. 107. – P. 173501.

- A4. The influence of electron energy quantization in a space-charge region on the accumulation capacitance of InAs metal-oxide-semiconductor capacitor / A.P. Kovchavtsev, A.V. Tsarenko, A.A. Guzev, M.S. Aksenov, V.G. Polovinkin, A.E. Nastovjak, N.A. Valisheva // J. Appl. Phys. 2015. Vol. 118. P. 125708.
- A5. Fluorine and oxygen adsorption and their coadsorption on the (111) Surface of InAs and GaAs / A.V. Bakulin, S.E. Kulkova, M.S. Aksenov, N.A. Valisheva // J. Phys. Chem. C. – 2016. – Vol. 120. – P. 17491-17500.
- A6. Passivation mechanism of the native oxide/InAs interface by fluorine / N.A. Valisheva, A.V. Bakulin, M.S. Aksenov, S.E. Kulkova, J. Phys. Chem. C. 2017. Vol. 121. P. 20744-20750.
- A7. Influence of quantizing magnetic field and Rashba effect on indium arsenide metal-oxide-semiconductor structure accumulation capacitance, A.P. Kovchavtsev, M.S. Aksenov, A.V. Tsarenko, A.E. Nastovjak, A.G. Pogosov, D.A. Pokhabov, O.E. Tereshchenko, N.A. // J. Appl. Phys. 2018. Vol. 123. P. 173901.
- А8. Пат. 2611690 Российская Федерация, МПК Н 01 21/3105. Способ изготовления МДП-структур на основе InAs / О.Е. Терещенко, Н.А. Валишева, С.Ф. Девятова, М.С. Аксенов; заявитель и патентообладатель Институт физики полупроводников им. А.В. Ржанова Сибирского отделения Российской академии наук (ИФП СО РАН). – №2015157446; заявл. 31.12.2015; опубл. 28.02.2017, Бюл. №7. – 28 с.

Список цитируемой литературы

- Oktyabrsky S., Fundamentals of III-V semiconductor MOSFETs / S. Oktyabrsky, D. Ye. Peide. – New York: Springer, 2010. – 445 c.
- Koo H.C. Control of Spin Precession in a Spin-Injected Field Effect Transistor / H.C. Koo, J. H. Kwon, J. Eom, J. Chang, S. H. Han, M. Johnson // Science – 2009. – Vol. 325. – P. 1515.

- Овсюк В.Н. Матричные фотоприемные устройства инфракрасного диапазона / В.Н. Овсюк, Г.Л. Курышев, Ю.Г. Сидоров и др. – Новосибирск: Наука, 2001. – 376 с.
- Robertson J. Defect state passivation at III-V oxide interfaces for complementary metal-oxide-semiconductor devices. / J. Robertson, Y. Guo, L. Lin // J. Appl. Phys. 2015. Vol. 117. P. 112806.
- Interfecial chemistry of oxides on In_xGa_(1-x)As and implications for MOSFET application / C.L. Hinkle, E.M. Vogel, P.D. Ye, R.M. Wallace // Curr. Opin. Solid State Mater. Sci. – 2011. – Vol. 15. – P. 188-207.
- Berchenko N.N. The chemistry of the compound semiconductor-intrinsic insulator interface / N.N. Berchenko, Yu.V. Medvedev // Russ. Chem. Rev. - 1994. - Vol. 63. - P. 623-639.
- Wilmsen C.W. Single- and double-layer insulator metal-oxidesemiconductor capacitors on indium arsenide / C.W. Wilmsen, L.G. Meiners, and D.A. Collins // Thin Solid Films. – 1977. – Vol. 46. – P. 331-337.
- Lucovsky G. Local atomic order in native III–V oxides / G. Lucovsky, R.S. Bauer. // J. Vac. Sci.&Technol. – 1980. – Vol. 17. – P. 946-951.
- Houssa M. Universal stress-defect correlation at (100) semiconductor/oxide interfaces / M. Houssa, M. Scarrozza, G. Pourtois, V. V. Afanas'ev, A. Stesmans // Appl. Phys. Lett. – 2011. – Vol. 98. – P. 141901.
- Бессолов В.Н. Халькогенидная пассивация поверхности полупроводников А^ШВ^V. Обзор. / В.Н. Бессолов, М.В. Лебедев // ФТП – 1998. – Т. 32. – С. 1281-1299.
- Курышев Г.Л. Электронные свойства структур металл-диэлектрикполупроводник на основе InAs / Г.Л. Курышев, А.П. Ковчавцев, Н.А. Валишева // Физика и техника полупроводников – 2001. – Т. 35. – С. 1111-1119.
- Электрофизические свойства МДП-структур InAs-SiO₂-In₂O₃ с модифицированной границей раздела / Н.А. Валишева, А.А. Гузев, А.П. Ковчавцев, Г.Л. Курышев, Т.А. Левцова, З.В. Панова // Микроэлектроника – 2009. – Т. 38. – С. 99-106.