Дырочные состояния в искусственных молекулах, образованных вертикально сопряженными квантовыми точками Ge/Si

А. И. Якимов1, Г. Ю. Михалев, А. В. Ненашев, А. В. Дюрченский
Институт физики полупроводников им. А. В. Ржанова Сибирского отд. РАН, 630090 Новосибирск, Россия
Поступила в редакцию 15 марта 2007 г.

В приближении сильной связи исследованы пространственные конфигурации основного состояния и энергии связи дырки в "двухатомной" искусственной молекуле, образованной вертикально сопряженными квантовыми точками Ge/Si(001). Учтено неоднородное пространственное распределение упругих деформаций в среде, возникающих из-за различия параметров решетки Ge и Si. Расчет деформаций выполнен в рамках модели поля валентных сил с использованием мейнгамум потенциала Китинга. Показано, что формирование дырочных состояний определяется конкуренцией двух процессов, одним из которых является обобществление дырки при перекрытии "атомных" волновых функций, а вторым — позиционное асимметрии потенциальной энергии дырки в двух квантовых точках, вызванной напряжением полей упругих деформаций от вертикально приложений кластеров Ge. Обнаружено, что при толщине слоя Si между точками Ge (tD) больше 2.3 нм энергия связи дырки в основном состоянии системы из двух точек становится меньше энергии ионизации одиночной квантовой точки вследствие частичной релаксации упругих напряжений при сопряжении квантовых точек и уменьшении глубины потенциальной ямы для дырки. Установлено, что существует промежуточная область значений параметра tD, в которой ковалентная молекулярная связь разрушается, и происходит локализация дырки в одной из квантовых точек, характеризующейся контактными независимыми деформациями.

PACS: 73.20.Mf, 73.50.Pz

Энергетический спектр носителей заряда в идеальных квантовых точках (КТ) представляет собой набор дискретных уровней, и по этой причине КТ часто рассматриваются как искусственные аналоги реальных атомов. Наличие атомоподобного энергетического спектра носителей заряда, присущего системам с КТ, а также возможность синтеза таких электронных систем по "индивидуальному заказу" делают гетероструктуры с КТ весьма привлекательными с точки зрения создания полупроводниковых лазеров, фотодетекторов, одноэлектронных и одноэлектронных приборов. Используя КТ в качестве элементарных "строительных блоков", можно не только получать электронные системы с наименьшей эффективной размерностью, но и наоборот, — искусственно наращивать размерность путем создания электронно-связанных одноатомных непечей или двумерных слоев КТ.

Если квантовые точки расположены достаточно близко в пространстве так, что между ними возможны когерентные переходы электронов путем квантовомеханического туннелирования, то образуются конфигурации, связанные общими электронами и называемые искусственными молекулами. В такой системе электроны уже не принадлежат конкретным квантовым точкам, а формируют обобществленные молекулярные орбитали — аналог ковалентной свя на природных молекулах. Простейшим примером искусственной молекулы является туннельно связанная пара КТ. Именно така когерентная двухуровневая система рассматривается в настоящее время в качестве квантового бита информации для квантового компьютера. Для реализации кубика предлагается использовать либо спиновую [1] либо "зарядовую" [2—4] степень свободы, а в качестве носителей информации — электроны, дырки, или эксситоны. Из принципа неопределенности следует, что энергия связи электрона в основном состоянии искусственной молекулы всегда больше энергии электрона в изолированном КТ (рис.1), и по этой причине такое стабильное состояние называют связывающим (bonding). Ему соответствует симметричное комбинации атомных волновых функций |+> = |0> + |1>/sqrt(2), здесь цифры "0" и "1" нумеруют две КТ [5]. И наоборот, антисвязывающее (antibonding) состояние формирует ся антисимметричной орбиталой |-> = |0> — |1>/sqrt(2), который отвечает более низкой энергетической энерги электрона (рис.1). В этом состоит традиционный квантовомеханический подход к проблеме обра-

1) e-mail: yakimov@isp.nsc.ru
Рис. 1. Схематическое изображение зависимости энергии связи электрона в связывающем и антисвязывающем состояниях "двухатомной" искусственной молекулы от расстояния между КТ, образующими молекулу. Штриховой линией показан энергетический уровень дырок в одиночной КТ.

зования молекулярных орбиталей в системе туннельной связанных КТ.

Долгое время основным методом формирования двухатомных искусственных молекул являлась субмикронная электронная литография гетероструктуры с двумерным электронным газом в комбинации с селективным травлением и/или эффектом поля [6-10]. Недостатком таких КТ являются их большие (>50–100 нм) размеры, способные обесценивать проявление квантоворазмерных эффектов только при очень низких (< 4 К), не пригодных для практического использования температурах.

Для создания реальных приборных устройств, работающих в области температур вблизи комнатной, необходимы КТ с размерами порядка 10 нм и менее. Синтезировать массивы вертикально связанных искусственных атомов малых размеров стало возможным при использовании явления самоорганизации полупроводниковых наноструктур в процессе гетеропи ativ体育馆的 остов материалов с большим несводом параметром решетки. Примерами систем, демонстрирующих эффекты самоорганизации, являются гетеропарады Ge/Si и InAs/GaAs. Диффузия силой образования вертикально сопряженных КТ в многослойных гетероструктурах является упрощение деформации в среде [11]. Возмущение полей напряжений от уже сформированного нанокластера (квантовой точки) приводит к тонким зарядающим слоям материала матрицы, создавая место преимущественного зарождения нового остова на следующем "этаже". В результате формируются колонки КТ, сомкнутых в направлении роста. Кроме малого размера, другим достоинством искусственных молекул, образованных параметр самоорганизующихся КТ, является возможность превышецационного, на атомном уровне контроля расстояния между точками в колонках, означающий возможность управления электронной связью между нанокластерами по вертикали.

Напряженные слои Ge/Si(001) представляют собой гетероструктуры 2-го типа, в которых носители заряда разного знака разделены в гетерогранией: дыры локализованы в нанокластерах Ge, а электроны находятся в деликатированных состояниях зоны проводимости Si. Связывание электронных состояний возможно лишь в многослойных системах Ge/Si в результате расщепления Δ-доплан в зоне проводимости напряженного Si, вызванного упругими деформациями в окрестности КТ Ge [12]. Неоднородное распределение напряжений в окрестности гетерогранции, а также взаимное влияние полей упругих деформаций от сопряженных КТ определяют следующую характерную особенность самоорганизующихся искусственных молекул. А именно, КТ, полученные в результате самоорганизации процесса гетеропи ativ体育馆икс, как правило, имеют форму пирамиды, линз либо ограниченных "полусфер". В такой системе отсутствует горизонтальная плоскость симметрии (инверсия). Поэтому первая и вторая КТ в молекуле могут быть деформированными по-разному, даже если они имеют идентичные размеры, форму и элементный состав. Как показали численные расчеты для двойных КТ InAs/GaAs, асимметрия распределения механических напряжений оказывает существенное влияние на молекулярные орбитали электронов, приводя к увеличению [13] и асимметрии [14] расщепления электронных уровней, отвечающих одночастичным связывающему и антисвязывающему состояниям. Для квантовых состояний дырок в "двухатомных" молекулах InAs/GaAs ситуация оказывается еще сложнее. Упрогие деформации модифицируют структуру валентной зоны таким образом, что для дырок в InAs образуются две незнакомые потенциальные ямы. В результате гибридизации дырочных состояний не происходит, а возникает локализация дырок в одной из КТ [15, 16].

Состояния дырок в КТ Ge/Si формируются триями ветвями валентной зоны: подзонами тяжелых и легких дырок, а также спин-отнесенной подзоной. Тяжелые дыры характеризуются преобладающим положительным спином магнитного момента J_z = ±3/2 на вертикальную ось симметрии, а легкие дыры и дыры в спин-отнесенной подзоне - значениями J_z = ±1/2. Для нанокластеров Ge с зародышевыми размерами ~ 10 нм и

Письма в ЖЭТФ том 85 вып. 9–10 2007
доля состояния \(3/2\) находится на уровне \(80\%\) [17]. Перемещение состояний легких и тяжелых дырок есть результат неопределенности квазимпульса, повившейся из-за размерного ограничения движения дырок в латеральном направлении (в плоскости роста), поэтому этот эффект тем сильнее, чем меньше КТ. В условиях существования двухсветной деформации дырочные подзоны расщепляются. Следует ожидать, что возникшее при образовании сопряженных КТ Ge новое распределение полей деформаций модифицирует структуру валентной зоны, изменяя тем самым условия формирования молекулярных связей в искусственных молекулах Ge/Si. Целью настоящей работы является теоретический анализ электронной конфигурации одиночных дырочных состояний в массивах искусственных молекул, образованных вертикально сопряженными КТ Ge/Si(001).

"Двухатомная" молекула Ge/Si моделировалась двумя одинаковыми нанокластерами Ge, расположенными один над другим в направлении роста структуры \(z\) и разделенных слоем Si (рис.2). Толщина этого слоя \(t_{Si}\) варьировалась в вычислительном эксперименте. Нанокластеры Ge имели форму пярямид с ориентацией основания вдоль направлений \([100]\) (ось \(x\)) и \([010]\) (ось \(y\)) и боковыми гранями, ограниченными плоскостями \([105]\). Последнее обстоятельство означает, что отношение высоты к латеральному размеру составляет \(\approx 0.1\). Расчеты проводились для латерального размера КТ \(l = 11\) нм. Каждая пирамида располагалась на тонком сплющенном (смачивающем) слое Ge (рис.2). Толщина смачивающего слоя составляет 4 монослоя (один монослоян равен 1.41 Å). Выбранные геометрические параметры структуры (форма островков Ge и их размеры) соответствуют реальной, часто встречающейся экспериментальной ситуации [18]. Область кристалла, вложенная в вычислительный процесс, имела форму прямоугольного параллелепипеда и типичные размеры \(30a \times 30a \times 24a\) вдоль направлений \(x, y\) и \(z\), соответственно. Здесь \(a = 5.431\) Å — постоянная решетки объемного Si. Для того чтобы убедиться в правильном выборе размеров этой области, были проведены контрольные вычисления для нескольких размеров. Установлено, что при изменении вертикального размера "пищалка" от \(18\) до \(25\) энергия связи дырки остается неизменной с точностью до \(1\) мэВ.

В своих расчетах мы использовали подход, развитый ранее в работах [17, 19] для одиночной КТ Ge в Si. На первом этапе находилось трехмерное пространственное распределение упротой деформации в среде в рамках модели поля валентных сил в сочетании с аппаратом функции Грина для "атомистической" задачи теории упротости [19]. Для описания взаимодействия между атомами использовался потенциал Китинга [20, 21]:

\[
W = \frac{3}{16} \sum_{i} \sum_{j} \alpha_{ij} \left(\frac{r_{i} - r_{j}}{d_{ij}}\right)^{2} + \frac{3}{8} \sum_{i} \sum_{j > k} \frac{\beta_{ijk}}{d_{ij} d_{ik}} \left(\frac{r_{i} - r_{j}}{r_{i} - r_{k}} + \frac{d_{ij} d_{ik}}{3}\right)^{2},
\]

где индексы \(i, j, k\) нумеруют атомы, причем индекс \(i\) пробегает по всем атомам, \(j\) в первой сумме — по всем ближайшим соседям \(i\)-го атома, а пара индексов \((j, k)\) во второй сумме соответствует всем парам ближайших соседей \(i\)-го атома, \(r\) — положение атома, \(d_{ij}\) — длина ненапряженной связи, а \(\alpha_{ij}\) и \(\beta_{ijk}\) — силовые константы.

Расчет энергетического спектра дырок проводился в приближении сильной связи с базисом \(sp^{3}\) [22]. Для каждого из атомов задавался набор орбиталей \(s, p_{x}, p_{y}\) и \(p_{z}\), размерность вектора состояний системы определялась числом атомов, уменьшенным на число орбиталей с учетом их двухкратного спинового вырождения. Учитывались взаимодействие только между ближайшими соседями в рамках двухцентрового приближения [23], а также спинорбитальное взаимодействие [24]. Деформационные эффекты включены в задачу через зависимость межатомных матричных элементов гамильтониана от ориентации соответствующих связей [23] и от их длин [25]. Энергии атомных орбиталей, двухцентровые интегралы перекрытия, их зависимость от длины связей подбиралась таким образом, чтобы значения эффективных масс дырок и константы деформационных потенциалов для Ge и Si были близки к
экспериментальным значениям. Значения этих параметров модели приведены в работе [26].

Для нахождения энергии связи дырки в основном состоянии и огибающей волновой функции был использован метод свободной релаксации [27, 28]. Метод заключается в том, что решается уравнение для "минимума" времени Τ:

\[-\hbar \frac{d\psi}{dt} = H\psi,\]
(2)

которое получается из нестандартного уравнения Шредингера \(i\hbar \frac{d\psi}{dt} = \hat{H}\psi \) путем формальной замены \(\tau = it \). В качестве начального условия \(\psi|_{\tau=0} \) берется произвольная "затравочная" волновая функция. Волновую функцию \(\psi \) можно разложить по собственным функциям гамильтониана, удовлетворяющим решению уравнения \(\hat{H}\psi = E\psi \), а вклад функции \(\psi \) от \(\tau \) представить в виде \(\psi(\tau) = \sum_i C_i \psi_i \exp(-E_i \tau / \hbar) \). При \(\tau \to \infty \) слагаемые с большими энергиями \(E_i \) обращаются в нуль, и во всей сумме остаются только компоненты, соответствующие основному состоянию.

Энергия связи дырки в основном состоянии искусственной молекулы, рассчитанная с учетом реального изменения полей упрощенных деформаций, возникающих при сопряжении КТ, представлена на рис. 3 как функция расстояния между нанокластерами Ge \(t_{Si} \). Там же показан энергетический уровень дырки для одиночной КТ, отвечающий ситуации \(t_{Si} \to \infty \). Видно, что учет деформационных эффектов приводит к существенному отклонению от ожидаемой картины, представленной на рис. 1. А именно, при \(t_{Si} \geq 2.3\text{ нм} \) энергия связи дырки в основном состоянии системы, состоящей из двух точек, становится меньше энергии дырки в одиночной КТ. Формально это означает "диссоциацию" молекулы при удалении КТ друг от друга. Обратное поведение (увеличение полной энергии системы из двух атомов водорода или атома и иона при их сближении) известно в квантовой механике как результат кулоновского растягивания двух протонов. В данном случае, как будет видно дальше, причина заключается во взаимодействии полей деформаций.

Для понимания природы возникшей аномалии необходимо проанализировать распределение механических напряжений в структуре в сочетании с волновыми функциями дырок. Профили двухосной деформации \(\varepsilon \) и пространственной конфигурации дырочного состояния вдоль вертикальной оси симметрии молекулы \(z \), проходящей через вершину пирамид, приведены на рис. 4 и рис. 5, соответственно.

Рис. 3. Энергия связи дырки в основном состоянии "двухатомной" молекулы как функция толщины верхнего слоя Si между нанокластерами Ge \(t_{Si} \) (сплошная линия). Штриховой линией показан энергетический уровень дырки в одиночной КТ. На вставке приведено относительное положение "край подложки тяжелых дырок" в области максимума сосредоточения волновой функции дырки (точки A и B на рис. 5) как функции расстояния между нанокластерами Ge. Энергия \(E_{hh} \) отсчитана от энергии в изолированной КТ \(E_{hh}(t_{Si} \to \infty) \).

Рис. 4. Профили двухосной деформации \(\varepsilon \) вдоль вертикальной оси симметрии молекулы \(z \) для значений \(t_{Si} = 1.6, 3.3, 5.5 \text{ нм} \) и одиночной КТ \((t_{Si} \to \infty) \). Величина двухосной деформации определяется как \(\varepsilon = \varepsilon_{zz} - \frac{1}{2}(\varepsilon_{xx} + \varepsilon_{yy}) \), где \(\varepsilon_{xx}, \varepsilon_{yy} \) и \(\varepsilon_{zz} \) — диагональные компоненты тензора напряжений. Начало координат соответствует нижней границе нижнего смещающего слоя (wetting layer) Ge.

Видно, что при сопряжении нанокластеров Ge происходит уменьшение двухосной деформации в каждом из нанокластеров по сравнению со случаем одиночной КТ и возникает деформационная асимметрия: напряжения в верхней КТ оказываются меньше, чем...
Рис. 5. Пространственные распределения плотности заряда дырки \(|\psi(z)|^2 = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} |\psi(x,y,z)|^2 dx dy dz\) вдоль вертикальной оси симметрии молекулы \(z\) для различных значений \(t_{Si}\). Здесь \(\psi(x,y,z)\) — огибающая волновая функция дырки. Для удобства восприятия кривые смещены по оси ординат на величину \(0.3 \text{ нм}^{-1}\). Нача-ло координат соответствует нижней границе нижнего смачивающего слоя (wetting layer) Ge

в нижней. Потенциальная яма для дырок в Ge формируется разрывом краев валентной зоны на гетерогранической Ge/Si. Домнирующий вклад в основное состояние дырки, локализованной в КТ Ge, вносит подзону тяжелых дырок [17]. Смещение края подзоны тяжелых дырок в результате деформации \(\Delta E_{hh}\) можно представить как [29]

\[
\Delta E_{hh} = \Delta E_{hyd} + \Delta E_b, \tag{3}
\]

где \(\Delta E_{hyd}\) — смещение, вызванное гидростатической компонентой деформации, \(\Delta E_b\) — двухосной компонентой. Здесь

\[
\Delta E_{hyd} = a_e (\varepsilon_{xx} + \varepsilon_{yy} + \varepsilon_{zz}), \tag{4}
\]

\[
\Delta E_b = -b [\varepsilon_{zz} - 0.5(\varepsilon_{xx} + \varepsilon_{yy})], \tag{5}
\]

где \(\varepsilon_{zz}, \varepsilon_{xx}\) и \(\varepsilon_{yy}\) — диагональные компоненты тен-зора напряжений, \(a_e\) и \(b\) — соответствующие деформационные потенциалы. Для Ge \(a_e = 1.24 \text{ эВ}, b = -2.9 \text{ эВ} [30]. На вставке к рис.3 показано относи-тельное положение края подзоны тяжелых дырок в областях максимального сосредоточения волновой функции (точки А и Б на рис.5) в обеих КТ как функции расстояния между нанокластерами Ge. Энергия отсчитана от уровня в изолированной КТ. Происходящая в "двуатомной" молекуле релаксация упругих напряжений приводит к смещению уровня дырки в область меньших значений энергий и, следовательно, к уменьшению энергии связи дырки в молекуле (область \(t_{Si} \geq 2.3 \text{ нм}\) на рис.3). Фактически отрицательное смещение края подзоны тяжелых дырок в обеих КТ при их сближении означает для дырки уменьшение глубины обеих потенциальных ям в валентной зоне.

Критерий формирования ковалентной молекулярной связи определяется соотношением интеграла перекрытия \(Q\) и разности энергий дырки в изолированных КТ \(\Delta E = E_2 - E_1\). Для связывания точек в стабильную молекулу необходимо

\[
Q > \Delta E. \tag{6}
\]

При малых значениях параметра \(t_{Si}\) интеграл перекрытия экспоненциально велик, и несмотря на существующую асимметрию дырочных состояний в КТ, условие (6) выполнено (область \(t_{Si} < 3.8 \text{ нм}\)). С ростом \(t_{Si}\) интеграл перекрытия уменьшается. При \(t_{Si} \approx 3.8 \text{ нм} Q \) становится меньше \(\Delta E\) и молекулярная орбиталь разрушается (рис.5). В результате, дырка локализуется в нижней КТ, в которой деформация максимальна (рис.4) и потенциальная яма для дырки имеет наибольшую глубину. При дальнейшем увеличении \(t_{Si}\) нанокластеры Ge постепенно перестают "чувствовать" друг друга через поля напряжений, распределение деформаций в обеих КТ становится одинаковым (хотя и асимметричным относительно горизонтальной плоскости \(z = \text{const}\)), \(\Delta E\) стремится к нулю (см. рис.3) и происходит растекание молекулярной связи.

Обращаем внимание читателей на то, что в данной работе мы ограничились изучением только одночастичных дырочных состояний, определяющих электронную структуру молекулы Ge/Si(001), связанной одной дыркой, оставив рассмотрение эффектов кулоновского и обменного взаимодействий для дальнейшего развития исследований в этом направлении.

В заключение необходимо отметить следующее. В наших расчетах мы полагали, что состав Ge в обоих нанокластерах, образующих искусственную молекулу, равен 100% при любых \(t_{Si}\). В реальной ситуации формирование вертикально связанных остроков Ge/Si(001) сопровождается изменением элементного состава нанокластеров, вызванным деформационно-стимулированным перемещением Ge и Si [31].
Причём эффективность этого процесса может зависеть от толщины барьерного слоя Si между KT. При уменьшении состава Ge в островках глубина потенциальной ямы для дырок в валентной зоне и энергии локализации дырки уменьшаются. Поэтому на практике при соприкосновении KT Ge следует ожидать образования еще более слабой молекулярной связи, чем та, которая приведена на рис.3. Тем не менее, результаты, полученные в данной работе, позволяют выявить основные физические механизмы, ответственные за формирование молекулярных состояний в системе упруго неприжатых KT.

Авторы благодарны А.Ф. Зиновьевой за полезные обсуждения работы. Работа выполнена при финансовой поддержке Российского фонда фундаментальных исследований (грант # 06-02-16143). А.И.Я. благодарит Фонд содействия отечественной науке, А.В.Н.–фонд “Династия”.