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Strong to weak localization transition and two-parameter scaling
in a two-dimensional quantum dot array
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The transition from strong to weak localization behavior was observed in two-dimensional Ge/Si quantum
dot structure under the variation in the quantum dot occupancy, their areal density and annealing of the
structures at 480—625 °C. To clarify the carrier transport mechanism and separate the hopping and diffusive
regimes, the temperature dependence of conductance and conductance nonlinearity were analyzed in the
structures with different correlations between the disorder and interaction. It was shown that the change in the
relative disorder without significantly changing the interaction keeps the system inside the one-parameter
scaling. The role of the interaction in two-parameter scaling was revealed by observing the shift of Gell-Mann-
Low scaling function for the samples with large variation in the Coulomb interaction.
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I. INTRODUCTION

According to the Anderson model,! the transition from
localized to delocalized state in a three-dimensional disor-
dered system is driven by the relative disorder Z=I/W,

where W is the energy levels dispersion and /= [ lﬁfﬁ hd’r is
the hopping integral. The transition occurs when the
parameter Z increases over some critical value (I/W),,,;,. In
the opposite case of Z<(I/W),,; the electron wave functions
at the Fermi level remain localized, making the system an
Anderson insulator.

To describe the transport behavior of disordered systems,
the authors® proposed a one-parameter scaling theory in
which the disorder parameter determining the system state
was found to coincide with the nondimensional (in units of
e?/h) conductance G. The case of two dimensions (2D) was
shown to be a special in that it is the lower critical dimen-
sionality for the metal-insulator transition (MIT) in disor-
dered systems: in three-dimensional case, both metallic and
insulating states may exist, whereas in one dimensional case
any small disorder causes localization.

To clarify the possibility of MIT transition in 2D, over
two decades there was a high theoretical activity based on
expansions around 2D. Scaling theory of localization prohib-
its the existence of extended electronic states in 2D at abso-
lute zero in the presence of disorder. Arguments based on the
scaling theory indicate that as 7— 0, resistivity always in-
creases, exponentially in the case of strong localization (SL)
or logarithmically in the case of weak localization (WL).?
The sheet resistance determines whether the system falls into
the SL or WL regime. Following the experiments® per-
formed on a high-mobility 2D electron-gas system (2DES) in
zero magnetic field several groups have presented fairly con-
vincing evidence for the existence of a true MIT in 2D.

The conflict with the scaling theory of localization has
been partially resolved by Finkelstein® and Punnose and
Finkelstein,” who showed theoretically that two, instead of
one-parameter scaling defines the system state, with one
scaling variable being governed by disorder, and the other,
by the electron-electron (e-e) interaction. In spite of the ex-
tensive theoretical work, done to prove that the e-e interac-
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tion can indeed induce delocalization in 2D disordered
systems,®'% no conclusive experimental evidence for this
phenomenon has been reported so far. For such evidence to
be gained, the e-e interaction and the disorder have to be
varied independently. However, in the majority of reported
studies, MIT was observed while varying just one parameter,
the carrier concentration N, affecting both the disorder and
the interaction. In spite of this, D. A. Knyazev et al.'! and S.
Anissimova et al.'? could manage to describe the transport
properties of 2DES with two scaling parameters when vary-
ing the carrier concentration and the measurement tempera-
ture only with!? and without'! magnetic field; they, however,
failed to reveal the independent contributions to transport
regime due to the e-e interaction and disorder.

In the present study, the scaling hypothesis was scruti-
nized when studying the conductance behavior in 2D tunnel-
coupled Ge quantum dots in Si at different correlations be-
tween the disorder and e-e interaction. In contrast to the
majority of 2DES studies, we varied several experimental
parameters that had different influence on the disorder and
the e-e interaction. A characteristic feature of the Ge/Si quan-
tum dots (QDs) system is that, unlike in 2DES, where the
carrier localization is caused by impurity-induced fluctuating
potential, the localization of holes in QD plane results from
the structural disorder originating from the size dispersion of
QDs and their random distribution in the growth plane. This
kind of disorder is expected to be independent of the carrier
concentration, QD composition, and array density. So, high-
resolution transmission electron microscopy and scanning
tunnel microscope images for the samples with different QD
density (4 X 10" cm™ and 8 X 10" ¢cm™2) have practically
the same size dispersion (~15%). Doping of the QD array
changes the value of Z via the hopping integral and modifies
the Coulomb interaction between QDs. Both the hopping in-
tegral and the e-e interaction vary nonmonotonically with the
doping level due to nonmonotonic dependence of the density
of states on energy. In this situation, the Coulomb interaction
attains its highest value when the ground and excited states
of QDs become fully filled with charge carriers, whereas the
hopping integral vanishes owing to the corresponding de-
crease in the density of states.
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Changing the QD array density, their size and composi-
tion simultaneously with the variation in the dot filling fac-
tor, one can obtain QD structures with a broad range of cor-
relations between the relative disorder Z and the interaction.
This in turn makes it possible to test the scaling hypothesis
and identify parameters that determine the transport regime
of the system. Variation in several parameters drives the sys-
tem not along the single trajectory, as in,!"2 but via some
area of the plane of two scaling parameters. To carefully
check the scaling hypothesis, one has to provide for a suffi-
ciently wide range of conductance values in the system. It
has been shown recently!>!* that hopping conductance,
which determines the charge-transport mechanism in Ge/Si
QD arrays at low temperatures (<20 K), broadly varies,
from 4 X 107 to 6 X 10712 Ohm™', when the filling factor of
QDs with holes v increases from 0.5 to 6. Moreover, not only
the conductance, but also the localization radius & in this
system was shown'? to be substantially dependent on v, with
&—values varying by more than one order of magnitude as
we pass from full- to half-filled QD ground state. Normally,
the localization radius increases strongly in the vicinity of
the transition point, suggesting that the transport regimes of
the Ge/Si QDs system will undergo changes at further in-
crease in &.

Three ways to vary the disorder, the hopping integral, and
the interaction force, all inducing changes in the conductance
and in the & value, were proposed and realized in this work.
First, the average number of holes in QD was varied by the
boron concentration in the 6-doped Si layer inserted 5 nm
below the QD layer. Second, to enhance the hopping integral
I and the interaction without significant change in W, the QD
array density value was increased from 4% 10'' cm™ to
8 X 10'"" cm™ by changing the growth regimes. Third, an-
nealing at 7=480-625 °C was employed to modify the size
and composition of the Ge islands, which was expected to
enhance the overlap of carrier wave functions without seri-
ously affecting the e-e interaction in the system. Variation in
QD structural parameters was applied to QD arrays with dif-
ferent doping levels. To reveal the influence which the e-e
interaction has on the transport behavior of the QD systems
under study, we used samples in which the long-range Cou-
lomb potential was screened with a metal plane located close
to the QD layer.

The mechanism of charge transport in examined systems
was analyzed considering the whole data set taken from
samples grown, doped, and annealed under different condi-
tions. As a rule, the transport behavior of 2D systems can be
adequately understood within the framework of the theory of
quantum corrections'” (in the range G > e?/h) or within the
theory of hopping conduction!'® (in the range G < 107%?/h).
However, the wide intermediate range of G still remains a
matter of heated debates.

For instance, G. M. Minkov et al.,'”® who examined the
field dependencies of conductance tensor components in low
and high magnetic fields, have arrived at a conclusion that all
transport phenomena in the systems of interest could be ad-
equately described within the framework of the quantum cor-
rection theory even at conductance values much smaller than
e?/h. When analyzing the nonohmic conductance,?’ they
came to a conclusion that the conductance in 2D systems
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behaves such as a diffusion one down to G =~ 10~2¢?/h. How-
ever, Gershenson et al.?' showed that in hopping systems
with a large radius ¢ the behavior of conductance nonlinear-
ity and magnetoresistance is similar to that in WL systems.
In such systems, electron motion is still diffusive within the
localization domain, with the same electron mean-free-path [
as in WL regime.

To discriminate between the hopping and diffusion re-
gimes in our samples, in the present work we thoroughly
examined the conductance versus temperature within the
strong and weak localization approaches, and also analyzed
the conductance nonlinearity, using the method proposed in
Ref. 20. As a result, we identified a transition from
hopping to diffusion transport, and the range of intermediate
conductance values was found to be much narrower
(1072e2/h=G=0.4¢*/h) than that known from previously
reported experimental data.

When checking the scaling hypothesis for our samples,
we found that both the interaction and the disorder determine
the transport mode of the system and the transition from
strong to weak localization. With the interaction force chang-
ing insignificantly, data taken from samples with different
QD array densities and from samples annealed at different
conditions can be described with one-parameter scaling prac-
tically for all used filling factors. The only sample in which
the interaction reaches a maximum value (v=2) exhibited an
upward shift of the Gell-Mann-Low function? from the com-
mon curve for all other samples, suggesting that the interac-
tion is the second parameter determining the system state.
The role of the long-range Coulomb interaction is definitely
confirmed by the observation of downward shift of the uni-
versal scaling curve in the case when the interaction is
screened by the metal plane located nearby of the QDs plane.

The paper is organized as follows. The samples and the
experimental conditions are described in Sec. II. The analysis
of the conductance versus temperature is given in Sec. III.
The nonlinearity study for the conductance is reported in
Sec. I'V. Finally, the scaling behavior of examined QD arrays
is discussed in Sec. V.

II. SAMPLES AND EXPERIMENT

The samples were grown on a (001) p-Si substrate with a
resistivity of 20 ()-cm by molecular-beam epitaxy of Ge in
the Stranskii-Krastanov growth mode. There were two re-
gimes of growth allowing to obtain the QDs array with dif-
ferent density. In the first case, the growth temperature for 10
monolayers (ML) Ge layer was 300 °C and the growth rate
was 0.2 ML/s. As a results, the areal density of the dots was
shown to be ~4X 10" cm™. This type of samples we
named as single density (SD) samples. In the second case,
decrease in the Ge growth temperature down to 275 °C with
simultaneous increase in the growth rate allows to reach the
twice higher QDs areal density (~8X10'! cm™). These
samples we refer to as double density (DD) samples. To sup-
ply holes to the dots, a boron d-doped Si layer was inserted 5
nm below the Ge QDs layer. Because the ionization energy
of boron impurities in Si is 45 meV and the energies of the
first ten hole levels in Ge QDs of this size are 200-400
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FIG. 1. Temperature dependence of conductance for the samples
with different areal density and filling factor v.

meV,?? at low temperatures holes leave impurities and fill
levels in QDs. To get significant changes of the localization
radius &, the number of holes per dot was chosen to be 2, 2.5,
and 2.85 for the SD samples and 2.1, 3, 3.8, and 4.75 for the
DD samples. The SD samples were exposed to additional
annealing in Ar atmosphere during 30 min at 550, 575, 600,
and 625 °C. The silicon cap layer has a thickness of 40 nm.
Al metal source and drain electrods were deposited on the
top of structure and heated at 480 °C to form reproducible
Ohmic contacts. The resistance along the QDs layer was
measured by the two-terminal method with a Keithley 6514
electrometer. The temperature stability was controlled using
Ge thermometer. The conductance measurements were car-
ried out using transport dewar at temperatures from 300 to
4.2 K and in voltage range of 0.1 to 10 V.

III. TEMPERATURE DEPENDENCE OF CONDUCTIVITY

Typical temperature dependencies of conductance G(7T)
in e?/h units are shown in Fig. 1 as Arrhenius plots for
nonannealed SD and DD samples with different dot filling
factor.

One can see that the conductance of SD sample is much
less than that for DD sample and changes with the filling
factor v. The G values of DD samples lie in the range typical
for the diffusive regime.”> Dependence of G(v) for the
sample with QDs double density is very weak and monoto-
nous. Annealing of all SD samples at 550—625 °C leads to
an increase in the conductance with annealing temperature.
Typical curves after this treatment are shown in Fig. 2 for the
SD sample with v=2.5. The conductance of this sample
reaches G~e%/h after treatment at 600-625 °C; for the
sample with v=2.85 conductance tends to G~e*/h after
625 °C annealing, whereas the G of the sample with v=2
always remains much less than e*/h.

A. Analysis in the framework of hopping transport

In general, the temperature dependence of conductance
for variable-range hopping (VRH) is given by

G(T) = yT" exp[- (Ty/T)"], (1)

where y and m are the constants, 7, is the material-
dependent constant, x=1/3 (Mott law) and x=1/2 [Efros-
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FIG. 2. Temperature dependence of conductance for the SD
samples with v=2.5 annealing at 480-625 °C.

Shklovskii (ES) law] for the 2D VRH without and with
electron-electron interaction, correspondingly. When m ~ 0,
the prefactor becomes temperature independent and phonon-
less hopping with wuniversal conductivity prefactor
Gy~ ¢e*/h is observed. Phononless mechanism of hopping
conduction was proposed in ref.?*? and involves the stimu-
lation of the electron transition between localized states by a
charge fluctuation in close located pairs—fluctuators.
Localization length & can be determined for interacting
samples from the T, value as é=Ce?/ekyT,, where theoreti-
cal value of constant C for single-electron hopping?® in 2D is
C=6.2, and ¢ is the static dielectric response, kj is the Bolt-
zmann’s constant. To determine the behavior of G(T), we
analyze the temperature dependence of the reduced activa-
tion energy w(7T)=dIn G(T)/dIn T=m+x(Ty/T)* using the
method proposed in Ref. 27. In this approach, if
m<x(Ty/T)*, then In w(T)=A-x1In T and A=x In Ty+In x.
Plotting In w as a function of In 7, one can find the hopping
exponent x from the slope of the straight line. The parameter
A can be found by the intersection point of the straight line
with the ordinate axis, which gives the characteristic tem-
perature T,=(104/x)"*. Typical plot of In w versus In T for
the SD sample with v=2.5 annealed at different temperatures
are given in Fig. 3. When linear relationship is observed
between In w(T) and In(7), it means that m<x(T,/T)* and

SD v=25
A 480°C
O 600°C

In(T/T,)

FIG. 3. Analysis of the reduced activation energy for SD sample
with »=2.5 annealed at 480-625 °C. The solid lines are least-
squares fits to the linear dependence. Data oscillations for the
sample annealed at 625 °C are an artifact that can be defined by
temperature or conductance fluctuation during the measurements.
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FIG. 4. Localization length & for SD samples with different v
annealed at 480—600 °C (bottom curves) and for DD samples in
dependent on v (top curve) without additional annealing. The lines
are provided as a guide to the eye.

parameter x can be determined. Analysis of all used samples
shows that the SD samples annealed at the temperature
up to 575 °C are well described by the Eq. (1) with
x=0.5%0.05, typical for the ES law. The exponent m was
extracted from the fitting of the experimental dependencies
of G(T) with Eq. (1). We have obtained m~ 0.1 for these
samples, which indicate that in the samples with the Cou-
lomb gap the pre-exponential factor is virtually temperature-
independent and conductance is determined by the phonon-
less hole hopping. The G(T) for the DD samples and for SD
samples with v=2.5 and 2.85 annealed at 600-625 °C is
possible to describe by the same equation but with poor ac-
curacy. Nevertheless, the same procedure was carried out for
all samples and both 7|, and localization length § were deter-
mined.

The ¢ values for all SD samples annealed at 480—600 °C
are shown in a Fig. 4.

After 480 °C treatment the magnitude of ¢ is about of 18
and 120 nm for the sample with v=2 and 2.5, correspond-
ingly. The consequent heating leads to the increase in & for
all SD samples, but the rate of this increase is much larger
for the sample with v=2.5. After 625 °C annealing of SD
samples, as well as for all DD samples (Fig. 4, top curve) the
formally determined values of ¢ are about some micrometers.

In the samples with large ¢ the criterion r,>§
(here r,=&(T,/T)*—the hopping length) for the hopping
transport is violated because of the Ty(~4-12 K)~T. The
large ¢ magnitude, poor accuracy in the evaluation of G(7)
by the VRH, high value of conductance (~e?/h), and weak
temperature dependence of conductance suggest that the
theory of quantum correction can be applied for describing
the transport behavior in this kind of samples.

B. Weak localization approach

In the classical case, the conductance in diffusive regime
is described by Drude formula and does not depend on the
temperature. The quantum corrections to the conductance
due to the interference of elastically scattered electrons lead
to the logarithmic decrease in the conductance with decreas-
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FIG. 5. Conductance of DD samples in dependent on In 7. Lines
are the logarithmic approximations of the experimental data.

ing temperature. For the 2D case this correction gives the
additional negative contribution AG=-2(e?/ h)ln(Lqﬁ/l),16
where [ is the electron mean-free path and L, is the phase
break length, Ly~ 7%, a<0. As the result, AGIn T. It was
shown!7-?8 that the same dependence of AG(T) appears due
to the influence of the interaction.

The temperature dependencies of all investigated
samples were analyzed in the frame of the theory of
quantum corrections. Figure 5 shows the conductance versus
InT for the DD samples. One can see that the conductance is
well described by the logarithmic law up to 20K and
AG~1+4x1073 Q7! that is a typical value for the quantum
corrections.” As for SD samples, the G(7) dependencies fall
into the logarithmic law for the sample with »=2.5 only after
annealing at 7=600 °C and for the sample with v=2.85
after annealing at 625 °C. Logarithmic temperature depen-
dence of conductance testifies to the transition to the weak
localization behavior after the annealing of the samples with
such nonwhole filling factors. The SD sample with v=2
never shows the AGoIn T dependence and the conductance
of this sample is changed in some orders with temperature
(Fig. 6). Such a behavior is not a typical for the weak local-
ization regime, in which AG should be of the same order as
the conductance itself.?’

Thus, the hopping transport and quantum correction ap-
proaches give noncontradictory description of conductance

FIG. 6. Conductance of SD samples with v=2 annealed at dif-
ferent temperatures as a function of In 7. Lines are the logarithmic
approximations of the experimental data.
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FIG. 7. The relative nonlinearity as a function of conductance
measured at different lattice temperature for the SD samples with
v=2 after annealing at 550 °C.

regimes and allow to distinguish samples with strong and
weak localization behavior.

IV. NONLINEARITY OF CONDUCTIVITY

In the conventional hopping regime, the nonlinear effects
are usually associated with “tilting” of electron hops® in an
electric field E>kgzT/er,. The nonlinear effects in diffusive
transport are caused by electron heating®! and determined by
the electron temperature 7, only. Starting from these differ-
ences, authors?® proposed the method allowing to divide the
hopping and diffusive transport regimes. This method is
based on the analysis of power density Q injected to the

sample. It was shown that the function of re(lz)itiv;c nonl%near—
CPN __9G(0)/190 _ (9G(1)/19T,) (3T ) 9Q
ity introduced as =557 lew)-c=""sgmmr T and

measured at different temperatures can determine the trans-
port behavior. As long as the conductance remains diffusive,
the T,—dependencies of 7 measured at different lattice tem-
peratures 7; have to fall on common curve and this property
has to disappear when the conductance becomes hopping.
Since dG/dT for the diffusive case equal to dG/dT,, the
same results should be valid for the analysis of dQ/dT in-
stead of 7(7) and correspondingly, for the analysis of the
derivative dP/dT of full power P injected to the sample. To
write dP/dT=(9P/dG)(dG/dT) and to take into account that
dG/dT depends only on temperature, experimentally we
studied the dP/dG versus G. Such dependences was exam-
ined for two SD samples with v=2 annealed at 550 °C and
with v»=2.5 annealed at 625 °C. As noted before, the tem-
perature dependence of conductance for the first sample cor-
responds to the hopping regime, for the second one is well
described by the quantum corrections to the conductance.
To obtain the dP/dG, we measured IV characteristics in
nonohmic regime, determined P=/V and G=I/V and than
numerically differentiated the P(G) dependence. The results
of such a procedure are shown in the Figs. 7 and 8 for the
first and second samples, correspondingly. Inset to Fig. 8
shows the IV characteristics of the sample measured at dif-
ferent temperatures. One can see that the dP/dG versus G
data obtained for different lattice temperatures fall on a com-
mon curve for the high-conductance sample with logarithmic
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FIG. 8. The relative nonlinearity as a function of conductance
measured at different lattice temperatures for the SD sample with
v=2.5 after annealing at 625 °C. Inset demonstrates initial IV char-
acteristics measured at different temperatures.

temperature dependence of G (Fig. 8). On a contrary, for the
sample in which the temperature dependence of G described
by VRH, the approximation of the electron temperature fails
(Fig. 7). It means that the conductance is defined by both
electron and lattice temperature due to the increase in the
hopping probability and impact ionization that is the charac-
teristic feature of hopping behavior. In the case of the
phononless transport the lattice temperature determines the
hopping probability in close located pairs fluctuators. The
result of the nonlinear conductance analysis confirms the
transport behavior of the system determined from the mea-
surements of the G(T) dependencies and testifies to the
crossover from hopping to diffusive transport in quantum
dots array annealed at high temperature.

V. SCALING HYPOTHESIS

To check whether one- or two-parameter scaling correctly
describes our system, we analyzed the G(7) dependencies of
all used samples in the frame of classical scaling theory. The
idea of scaling hypothesis was proposed in Ref. 2 for the
description of the metal-insulator transition. Following this
approach, the single scaling parameter—conductance, can be
used to describe the system state. They choose the Gell-
Mann-Low function 8(G)=d In(G)/d In(L) (L is the sample
size), which is the universal one for every dimension and
depends only on the conductance itself. On a metallic side of
transition B=d-2 (d is the system dimension), and S
«In(G) on the insulator side.

It can be shown (see Appendix) that in the case of the
universal B(In G) dependence, the universality should re-
main also for In G versus In T one after rescaling the tem-
perature axis. Moreover, when the conductance range for set
of samples is not too large, to use the scaling for In G is more
suitable than that for derivative.

The In(G/G,) versus In(T/T,) is plotted in a Fig. 9 for all
SD and DD samples under study. 7 is the arbitrary value,
chosen in our case as 1 K. We find that by rescaling the
temperature axis for each sample all of the data can be made
to overlap on a single smooth trajectory shown as a black
line. It is remarkable that a single scaling trajectory works
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In(T/T )

FIG. 9. Temperature dependencies of conductivity for all used
SD and DD samples (gray curves). Black universal curve obtained
by rescalling of the T axis. Lines divide the diffusion and hopping
behavior.

for the samples with different structural parameters, different
QDs density, treated in different regimes, with and without
additional annealing. The conductance as a function of tem-
peratures at the extremes should correspond to weak local-
ization behavior for the high-conductance regime and to the
hopping transport for low-conductance one. To check that
and find the bounds that separate two regimes, we approxi-
mated the universal dependence by both G~In(7) and
G ~exp(Ty/T)*>. The results of such an approximation are
shown in the Figs. 10 and 11, correspondingly. One can see
that at G=10"2¢?/h the conductance in the system is well
described by the hopping transport, whereas at G=0.4¢*/h
the conductance is due to the diffusive one. At that hopping
regime defines the behavior of SD samples annealed at
480 °C with different filling factor, while conductance of
DD samples and SD samples annealed at 600—625 °C falls
into diffusive regime. The observed range for intermediate
conductance is significantly narrower as compared with pre-
vious experimental data.

To find the inferred deviation from the universal curve
due to interaction, we carried out the analysis of In G deriva-
tive (B function). As it was shown in Appendix, for the hop-
ping case $ function can be represented as

0.0l

In(T/T )

FIG. 10. The logarithmic approximation of the universal curve
for high-conductance samples from Fig. 9. Line separates the weak
localization regime.
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FIG. 11. The ES-law approximation of the universal curve for
low-conductance samples from Fig. 9. Line separates the hopping
regime.
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The B versus In G dependencies are analyzed for the samples
with hopping transport behavior and the results are shown in
Fig. 12. The middle curve demonstrates the results of S cal-
culations for the samples with different filling factor of dots
with holes, different structural parameters of dots, and after
different annealing of samples. The only sample with v=2
has an upward deviation from this universal curve. The value
of this shift can be characterized by the change in conduc-
tance value at the same magnitude of S function. For the
sample with »=2 conductance decreases by a factor of ten as
compared to the samples with all other doping levels. We
suggest that namely Coulomb interaction that reaches the
maximum value at full filling of QDs ground state (v=2) can
be a second parameter besides the conductance that deter-
mined the system behavior. To rewrite the expression (2)
using the temperature dependence G(T)=G, exp[
~(Ty/T)"]

1 1
IB= Eln(Go/Gl) + Eln(G/Go), (3)

we can see that the pre-exponent term G, is the factor re-
sponsible for the shift of the universal curve. The nonmono-
tonic change in G versus filling factor of holes in QDs in the
wide range of v variation (0.5-6 holes per dot) was demon-

dInG/dInL

FIG. 12. B function for the samples under study.

125308-6



STRONG TO WEAK LOCALIZATION TRANSITION AND...

G (S) b1 In(w)
{1.0
{05
1x10-7 2
100
2 3
01 In(T)

FIG. 13. Temperature dependence of conductance (a) and the
logarithmic derivative In(w) (b) for unscreened (1) and screened (2)
samples.

strated by Yakimov'* for the samples exhibiting phononless
hopping transport.

To obviously check the influence of long-range interaction
to the system behavior, we use the screening of the interac-
tion putting a metal plate on the vicinity of QDs parallel to
the dot layer. The details of this procedure are described in
Ref. 32. The temperature dependencies of the conductance
for the samples with and without screening is shown in the
Fig. 13(a).

The analysis of the reduced activation energy for two
samples [Fig. 13(b)] testifies to the crossover from the inter-
action driven hopping (ES law) to the Mott one at tempera-
tures smaller than 9K. It means that the metal plane effec-
tively screens the long-range Coulomb interaction in this
system. Moreover, we already shown’? that transition from
ES to Mott VRH is accompanied by the simultaneous trans-
fer from electron to phonon-assisted hopping.

The B function for both unscreened (inside the middle
curve) and screened samples (bottom curve) is added to Fig.
12. One can see that the 8 of sample with screening Cou-
lomb interaction downwards from the middle curve. This
shift corresponds to the conductance value five times more
than that for unscreened samples at the same magnitude of
the 3 function. This result is a direct indication that not only
disorder but also interaction determines the system behavior
and confirms two-parametric scaling in interacting 2D sys-
tems. Independent contribution of these parameters into scal-
ing has never been observed experimentally before.

VI. CONCLUSIONS

Using different methods for the variation in the disorder
and interaction, the effect of the long-range interaction on the
transport in two-dimensional QD structures was revealed ex-
perimentally. It was shown that in the case of negligible
changes of the interaction force the transport properties of
samples with different QD array densities and samples an-
nealed at different conditions could be adequately described
with the Gell-Mann-Low one-parameter scaling function.
Upward deviation of the universal curve is observed in the
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QD structures with filling factor »=2, for which the interac-
tion reaches a maximum value, whereas the screening of the
Coulomb interaction leads to the downward shift of this
curve. Five times more change in conductance is observed
for the screened sample as compared with the unscreened
one at the same value of B function. It was found that
at G=10"2¢?/h the conductance in the system is well de-
scribed by the hopping transport, the diffusive regime is ob-
served at G=0.4¢?/h. The crossover from strong to weak
localization behavior takes place at the increase in QDs den-
sity and annealing of samples with nonwhole filling factor at
600-625 °C.
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APPENDIX

The function B in classical scaling theory is determined at
T=0. When the correlation length L. determining the con-
ductance both in insulator and metallic phase becomes finite
(T#0) and L>L,, it is correct to use L, derivative instead of
L one. In this case the conductance of L—size sample can be
represented as a sum of the series and parallel resistances
with the L,—size. It is obvious that G(L)=G(L,) and
B=d1In(G)/d In(L)=d In(G)/d In(L,). Thus, instead of the
sample size variation we can turn into the variation in the L.
The simplest way to change the L. is the changing of the
temperature. For the hopping case, the L. is the correlation
radius of the percolation network L.~ &Ty/T)*1+®),
where « (=1.3 for 2D) is the corresponding critical index and
x=1/3 (Mott law) and x=1/2 (ES law) (see above Eq. (1)).
For the diffusion regime, L,~ 1/7%°. Suggesting L. ,(T) de-
pendence, the 8 can be written down as

B din G _a’lnG dinT
“dlnL,, dinTdlnL,,

Hence,

dIn G
dinL,,

din G
dinT’

B(G) = =Y2

where v, , are proportional to the corresponding exponents
in L, ,(T) dependencies. Represent this expression as:

din G
’)’1,2ﬂ(G)

after its integration one can obtain that f(In G)=In T+C,
here C is a constant. Hence, we have shown that In G(In T)
curves should be universal after rescalling the temperature
axis.

=dInT,
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