

Article Structural Properties and Energy Spectrum of Novel GaSb/AlP Self-Assembled Quantum Dots

Demid S. Abramkin ^{1,2}, Mikhail O. Petrushkov ³, Dmitrii B. Bogomolov ³, Eugeny A. Emelyanov ³, Mikhail Yu. Yesin ⁴, Andrey V. Vasev ³, Alexey A. Bloshkin ^{2,5}, Eugeny S. Koptev ^{5,6}, Mikhail A. Putyato ³, Victor V. Atuchin ^{7,8,9,10,*} and Valery V. Preobrazhenskii ³

- ¹ Laboratory of Molecular-Beam Epitaxy of A3B5 Compounds, Institute of Semiconductor Physics, SB RAS, Novosibirsk 630090, Russia
- ² Department of Physics, Novosibirsk State University, Novosibirsk 630090, Russia
- ³ Laboratory of Physical Bases of Semiconductor Heterostructures Epitaxy, Institute of Semiconductor Physics, SB RAS, Novosibirsk 630090, Russia
- ⁴ Laboratory of Molecular-Beam Epitaxy of Elementary Semiconductors and A3B5 Compounds, Institute of Semiconductor Physics, SB RAS, Novosibirsk 630090, Russia
- ⁵ Laboratory of Nonequilibrium Semiconductor Systems, Institute of Semiconductor Physics, SB RAS, Novosibirsk 630090, Russia
- ⁶ Department of Automation and Computer Engineering, Novosibirsk State Technical University, Novosibirsk 630073, Russia
- ⁷ Laboratory of Optical Materials and Structures, Institute of Semiconductor Physics, SB RAS, Novosibirsk 630090, Russia
- ⁸ Research and Development Department, Kemerovo State University, Kemerovo 650000, Russia
- ⁹ R&D Center "Advanced Electronic Technologies", Tomsk State University, Tomsk 634034, Russia
- ¹⁰ Department of Industrial Machinery Design, Novosibirsk State Technical University, Novosibirsk 630073, Russia
- * Correspondence: atuchin@isp.nsc.ru or atuchin57@mail.ru, Tel.: +7-(383)-3308889

Abstract: In this work, the formation, structural properties, and energy spectrum of novel selfassembled GaSb/AlP quantum dots (SAQDs) were studied by experimental methods. The growth conditions for the SAQDs' formation by molecular beam epitaxy on both matched GaP and artificial GaP/Si substrates were determined. An almost complete plastic relaxation of the elastic strain in SAQDs was reached. The strain relaxation in the SAQDs on the GaP/Si substrates does not lead to a reduction in the SAQDs luminescence efficiency, while the introduction of dislocations into SAQDs on the GaP substrates induced a strong quenching of SAQDs luminescence. Probably, this difference is caused by the introduction of Lomer 90°-dislocations without uncompensated atomic bonds in GaP/Si-based SAQDs, while threading 60° -dislocations are introduced into GaP-based SAQDs. It was shown that GaP/Si-based SAQDs have an energy spectrum of type II with an indirect bandgap and the ground electronic state belonging to the X-valley of the AlP conduction band. The hole localization energy in these SAQDs to be as long as >>10 years, and it makes GaSb/AlP SAQDs promising objects for creating universal memory cells.

Keywords: quantum dots; GaSb/AlP; molecular beam epitaxy; structural properties; energy spectrum; QD-Flash

1. Introduction

The systems for long-term information storage with the possibility of fast access [1,2] are important for the development of computing technologies. The so-called universal memory cells combining the fast data access peculiar to the dynamic random-access memory (DRAM) and non-volatile long-term data storage will provide a significant increase in the performance and energy efficiency of memory elements that opens up prospects for a revolution in computer architecture. One of the promising methods in this research field is

Citation: Abramkin, D.S.; Petrushkov, M.O.; Bogomolov, D.B.; Emelyanov, E.A.; Yesin, M.Y.; Vasev, A.V.; Bloshkin, A.A.; Koptev, E.S.; Putyato, M.A.; Atuchin, V.V.; et al. Structural Properties and Energy Spectrum of Novel GaSb/AIP Self-Assembled Quantum Dots. *Nanomaterials* **2023**, *13*, 910. https://doi.org/10.3390/ nano13050910

Academic Editor: Lucien Saviot

Received: 31 January 2023 Revised: 26 February 2023 Accepted: 26 February 2023 Published: 28 February 2023

Copyright: © 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https:// creativecommons.org/licenses/by/ 4.0/).