Строение и электронная структура нестехиометрического обогащенного металлом ${ m ZrO}_x$

В. А. Гриценко $^{+*\times}$, Т. В. Перевалов $^{+*1}$, В. А. Володин $^{+*}$, В. Н. Кручинин $^+$, А. К. Герасимова $^+$, И. П. Просвирин $^\circ$

+Институт физики полупроводников им. А.В. Ржанова СО РАН, 630090 Новосибирск, Россия

*Новосибирский государственный университет, 630090 Новосибирск, Россия

[×] Новосибирский государственный технический университет, 630073 Новосибирск, Россия

°Институт катализа им. Г.К. Борескова СО РАН, 630090 Новосибирск, Россия

Поступила в редакцию 4 июня 2018 г. После переработки 3 июля 2018 г.

Атомная и электронная структура нестехиометрического обогащенного металлом оксида циркония, синтезированного методом ионно-лучевого распыления металлической мишени в атмосфере кислорода, исследовалась методами рентгеновской фотоэлектронной спектроскопии, комбинационного рассеяния света, спектроэллипсометрии и квантово-химического моделирования. Установлено, что ${\rm ZrO}_{x<2}$ состоит из ${\rm ZrO}_2$, металлического ${\rm Zr}$ и субоксидов циркония ${\rm ZrO}_y$. Для ${\rm ZrO}_y$ проведена оценка параметра стехиометрии. Показано, что оптические свойства ${\rm ZrO}_{x<2}$ определяются металлическим ${\rm Zr}$. На основе пространственных флуктуаций химического состава предложена модель флуктуации ширины запрещенной зоны и потенциала для электронов и дырок в ${\rm ZrO}_{x<2}$.

DOI: 10.1134/S0370274X18160026

В настоящее время оксид циркония привлекает большой интерес благодаря перспективам использования в качестве активной среды элементов энергонезависимой памяти, основанной на хранении заряда на ловушках (Charge Trap Flash memory – CTFM) [1– 3], а также на эффекте обратимого переключения диэлектрической пленки из высокоомного состояния в низкоомное при протекании импульса тока (Resistive Random Access memory – RRAM) [4–6]. Известно, что ключевым дефектом, определяющим электронные свойства ${\rm ZrO_2}$ и других high- κ диэлектриков, является вакансия кислорода [7, 8]. Для работы CTFM активный диэлектрический слой должен иметь высокую концентрацию дефектов ($> 10^{19}$ см⁻³), выступающих в качестве глубоких ловушек для инжектированных электронов и дырок. Такими ловушками в ZrO₂ являются вакансии кислорода [9]. В качестве запоминающей среды в RRAM, как правило, используются обедненные кислородом нестехиометрические пленки оксида [4, 5]. Резистивный эффект описывается филаментарной моделью, заключающейся в структурной перестройке под воздействием импульса тока локальной области диэлектрика за счет разрыва/восстановления связей металлкислород и формировании высокой концентрации дефектов, которые формируют проводящий канал нанометровой толщины [10]. Таким образом, перспективным материалом для RRAM и CTFM является нестехиометрический оксид циркония ${\rm ZrO}_{x<2}$.

Ранее было показано, что метод ионно-лучевого распыления металлической мишени в атмосфере кислорода (Ion Beam Sputtering Deposition – IBSD) позволяет синтезировать пленки ${\rm ZrO}_{x<2}$ с различным атомным отношением $x=[{\rm O}]/[{\rm Zr}]$, которое изменяется за счет варьирования парциального давления кислорода в ростовой камере [11, 12]. Однако строение (атомная структура) и электронная структура ${\rm ZrO}_{x<2}$ в настоящее время не установлена. В свою очередь, понимание влияния стехиометрии на электронную структуру оксида циркония открывает возможность управления его физическими (электрическими и оптическими) свойствами.

Целью настоящей работы является изучение атомной и электронной структуры нестехиометрического обогащенного металлом оксида циркония ${\rm ZrO}_{x<2},$ синтезированного методом IBSD. Исследование проводится с использованием фотоэлектронной спектроскопии, первопринципного квантово-химического моделирования, комбинационного рассеяния света и спектроэллипсометрии.

 $^{^{1)}}$ e-mail: timson@isp.nsc.ru

Аморфные пленки оксида циркония толщиной $\approx 50\,\mathrm{Hm}$ синтезированы на установке SOURCERER (Veeco-Ion Tech, Inc.) на пластинах Si: поверхность (100), n-тип, 5–7 Ом см. Пластины перед загрузкой травились в растворе HF для удаления естественного окисла. Мишени циркония (Zr > 99.9%) распылялись пучком ионов Ar⁺ в присутствии кислорода высокой чистоты ($O_2 > 99.999\%$). Энергия ионов в пучке 1.2 кэВ, плотность ионного тока на поверхности мишени $\sim 1 \,\mathrm{mA/cm^2}$. Перед подачей газов камера откачивалась до давления $\sim 10^{-5}\, \Pi a.\, B$ процессе распыления при одновременной подаче рабочих газов Аг и O_2 давление не превышало $\sim 10^{-2} \, \text{Па.}$ Температура подложки в процессе синтеза не превышала $350\,\mathrm{K}$. Содержание кислорода в пленке ZrO_x менялось варьированием парциального давления кислорода $P(O_2)$ регулятором расхода газа. Образцы ZrO_x выращены при $P(O_2) = 1.8 \cdot 10^{-3} \, \text{Па}$ и $9.0 \cdot 10^{-3} \, \text{Па}$. Образец металлического циркония изготовлен в виде полированной и химически очищенной от окисла пластинки из материала Zr мишени.

Состав пленок анализировался методом рентгеновской фотоэлектронной спектроскопии (РФЭС) на приборе SPECS, с использованием полусферического анализатора PHOIBOS-150-MCD-9 и монохроматора FOCUS-500 (излучение $AlK\alpha$, 1486.74 эВ, 200 Вт). Определение относительного содержания Zr и О в зоне анализа (глубина 6 нм) осуществлялось по интегральным интенсивностям остовных линий Zr и О, скорректированных на коэффициенты атомной чувствительности элементов. Форма линий аппроксимировалась в виде свертки функций Лоренца и Гаусса, фон вычитался по методу Ширли.

Квантово-химические расчеты проводились в пакете QUANTUM ESPRESSO в рамках теории функционала плотности в модели периодических ячеек с обменно-корреляционным функционалом ВЗЦҮР, воспроизводящим значение ширины запрещенной зоны $E_{\rm g} = 5.5\,{\rm эB}$ аморфного ${\rm ZrO_2}$ [13]. Энергия отсечки разложения волновых функций валентных электронов ${\rm Zr}\, 4s^24p^65s^25d^2$ и О $2s^22p^4$ по базису из плоских волн $1050\,\mathrm{pB}$. $\mathrm{ZrO}_{x<2}$ моделировался удалением атомов O в моноклинной суперячейке (m-ZrO₂). Выбор данной фазы обусловлен ее стабильностью и структурной близостью к аморфной. Положение нескольких вакансий О в структуре осуществлялось по методике, описанной в [14]. РФЭ-спектры рассчитывались суммированием парциальных плотностей заполненных состояний с весовыми множителями, равными соответствующим значениям сечения фотоионизации, и сглаживанием по Гауссу с $\sigma = 0.7 \,\mathrm{sB}$.

Структурные свойства ${\rm ZrO}_x$ также исследовались методом комбинационного рассеяния света (KPC). Спектры KPC регистрировались при комнатной температуре в геометрии обратного рассеяния, для возбуждения использовалась линия ${\rm Ar}^+$ лазера с длиной волны 514.5 нм. Использовался спектрометр Т64000 производства Horiba Jobin Yvon. Спектральное разрешение не хуже $2~{\rm cm}^{-1}$. Мощность лазерного пучка, доходящего до образца, $2~{\rm MBT}$.

Дисперсии показателя преломления и коэффициента поглощения определялись с помощью эллипсометра "Спектроскан": спектральное разрешение 2 нм, время записи одного спектра 20 с, угол падения луча света на образец 70°. Измерения проводились в диапазоне длин волн 250–900 нм. Использовалась четырехзонная методика измерений с усреднением по всем зонам. В расчетах использовалась оптическая модель: изотропная подложка – изотропная однородная пленка – среда. Подгонка спектральных зависимостей поляризационных углов осуществлялась, как описано в [15].

РФЭ-спектр Zr 3d пленки, синтезированной при $P({\rm O}_2)=9.0\cdot 10^{-3}\,\Pi{\rm a}$, хорошо описывается одним дублетом с положением максимума Zr $3d_{5/2}$ (182.3 эВ), отвечающим Zr⁴⁺, и совпадающим с данными для стехиометрического ZrO₂ 181.9–182.3 эВ [16, 17] (рис. 1). Для пленки, синтезированной при

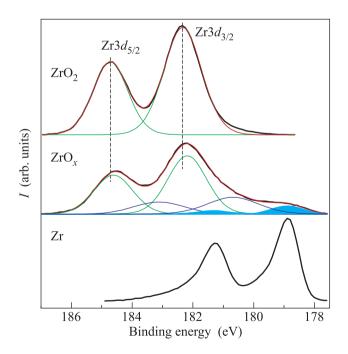


Рис. 1. (Цветной онлайн) РФЭС Zr3d линии ZrO_2 , ZrO_x и Zr (черные кривые) и их разложение на компоненты: сигнал от ZrO_2 – зеленые, от субоксида Zr – синие, от Zr – голубые, сумма компонент – красные

 $P({\rm O}_2)=1.8\cdot 10^{-3}\,{\rm \Pi}$ а наряду с наиболее интенсивным дублетом ${\rm Zr}3d_{5/2}$ (182.2 эВ) наблюдается плечо со стороны меньших значений энергий связи. Разложение этого спектра на отдельные компоненты позволяет выявить два дублета ${\rm Zr}3d$ с максимумами ${\rm Zr}\,3d_{5/2}$ при энергиях 178.9 и 180.7 эВ . Низкоэнергетический сигнал обусловлен металлическим ${\rm Zr}$ (рис. 1). Дублет с максимумом ${\rm Zr}\,3d_{5/2}$ при 180.7 эВ обусловлен ${\rm Zr}\,{\rm B}$ более низких степенях окисления, чем в ${\rm Zr}{\rm O}_2$, характерных для субоксидов циркония ${\rm Zr}{\rm O}_y$ (y=1/3, 2/5, 5/12, 1/2, 2/3, 1, 3/2) [18]. Анализ интегральных интенсивностей сигналов позволил установить, что исследуемая пленка ${\rm Zr}{\rm O}_{x<2}$ состоит из ${\rm Zr}{\rm O}_2$ на 67%, ${\rm Zr}{\rm O}_y$ на 24% и ${\rm Zr}$ на 9%.

Анализ РФЭС линий O1s и Zr3d для ZrO_x дает оценку соотношения атомных концентраций элементов $x \approx 1.7$. Поскольку точность метода, как правило, около 10%, атомное отношение [O]/[Zr] также оценивалось из сопоставления экспериментального и рассчитанного из первых принципов РФЭС валентной зоны, как это предложено для HfO₂ и $\mathrm{Hf_{0.5}Zr_{0.5}O_2}$ [19, 20]. Суть метода в подборе концентрации вакансий О в модельной структуре оксида, при которой интенсивность расчетного РФЭС пика выше потолка валентной зоны $E_{
m V}$ хорошо согласуется с экспериментальной. Метод базируется на согласии расчетного РФЭС объемного кристалла с экспериментальным для аморфной пленки. Сопоставление расчета и эксперимента предполагает, что РФЭС пик выше $E_{\rm V}$ формируется в равной степени вакансиями О и металлическим Zr, поэтому спектр реальной пленки ZrO_x сложного состава можно описать теоретическим для модели структуры оксида с однородным распределением вакансий О.

Для ZrO_x в РФЭС наблюдается пик с максимумом при энергии примерно на $2 \, {
m sB}$ выше $E_{
m V}$ (рис. 2). Аналогичная особенность наблюдалась для пленок ZrO_2 , облученных Ar^+ [21], и связывалась с кислородным обеднением. Расчетный РФЭС т-ZrO₂, в котором на 24 атома приходится две вакансии O ([O]/[Zr] = 1.75) слегка недооценивает, а спектр для той же суперячейки с тремя вакансиями O ([O]/[Zr] = 1.625) переоценивает интенсивность экспериментального пика. При этом положение и ширина пика хорошо согласуются с экспериментальным. Таким образом, первопринципные расчеты подтверждают экспериментально определенное значение x = 1.7. Поскольку $ZrO_{1.7}$ состоит на 24 % из субоксида ${\rm ZrO}_y$, оценочное значение y составляет 1.5. Стабильность Zr_2O_3 изучалась в [18, 22].

В отличии от эксперимента расчетная валентная зона ${\rm ZrO_2}$ более узкая состоит из двух несиммет-

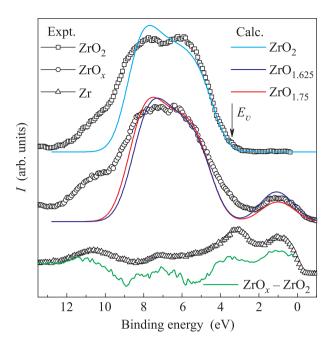


Рис. 2. (Цветной онлайн) Экспериментальные (символы) РФЭС валентной зоны ZrO_2 , ZrO_x и Zr, а также расчетные РФЭС m- ZrO_2 без дефектов и с различной концентрацией вакансий О

ричных пиков, что характерно также для HfO₂ и ${\rm Hf_{0.5}Zr_{0.5}O_2}$ и объясняется простотой теоретической модели. Кроме того, эксперимент для ZrO₂ демонстрирует пик при энергии связи около 10 эВ, интенсивность которого выше для пленки ZrO_{1.7}. Данный пик обусловлен металлическим Zr, РФЭС которого имеет максимум при этой энергии. Вероятно, в ZrO₂ концентрация металлического Zr мала настолько, что РФЭ-сигнал от него не идентифицируется в спектре Zr3d линии оксида. В работе [21] в РФЭС ZrO_2 данная особенность отсутствует. Для пленки ZrO_{1.7} эксперимент демонстрирует уширение спектра валентной зоны за счет наложения сигнала от металлического Zr. Как можно видеть, металлический Zr также дает вклад в формирование пика РФ- Θ С выше E_{V} , как и вакансии O.

В спектрах КРС пленки ${\rm ZrO_2}$ видны сигналы от подложки Si: линия от длинноволнового оптического (O) фонона $520.3\,{\rm cm^{-1}}$, а также от двухфононного рассеяния — два акустических фонона $(2{\rm A})~303\,{\rm cm^{-1}}$, акустический плюс оптический фононы $({\rm A+O})~621\,{\rm cm^{-1}}$ и два оптических фонона $(2{\rm O})\approx 970\,{\rm cm^{-1}}$ (рис. 3). Пленка прозрачна в видимом свете и действует как просветляющее покрытие: сигнал от подложки выше, чем в случае Si без ${\rm ZrO_2}$. Пики с частотами меньше $150\,{\rm cm^{-1}}$ — результат неупругого рассеяния света на молекулах воздуха. Из анали-

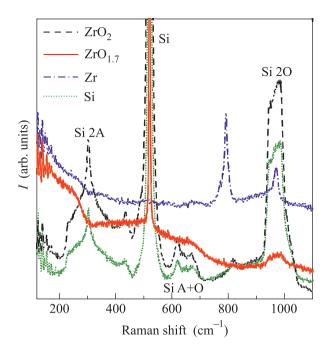


Рис. 3. (Цветной онлайн) Спектры КРС пленок ${\rm ZrO_2},$ ${\rm ZrO_{1.7}},$ а также Si подложки и металлического ${\rm Zr}$

за колебательных мод ZrO_2 [23, 24] следует, что его спектр KPC должен содержать пики в районе 300, 400 и 600 см⁻¹. На фоне особенностей от подложки вклад от данных пиков ZrO_2 различить невозможно.

Пленка ZrO_{1.7} полупрозрачна в зеленом свете, сигнал от подложки сильно ослаблен. В спектре КРС наблюдается "акустическое плечо" в области частот менее $300\,\mathrm{cm}^{-1}$, которое имеется в спектре Zr. Следовательно, данная особенность связана с присутствием в пленке кластеров Zr: вклад от фононов, локализованных в кластерах Zr, либо от поверхностных фононов на границе кластеров Zr. В спектре также проявляются особенности в районе 970 см⁻¹, которые по форме отличаются от (20) пиков подложки. Вероятно, это вклад от валентных колебаний связей Zr-O [25], либо двухфононные особенности от колебательных мод, однофононное рассеяние от которых запрещено правилами отбора. В спектре Zr присутствуют пики с частотами $790 \text{ и } 970 \text{ см}^{-1}$, которые также могут быть обусловлены колебаниями Zr-O от естественного окисла, либо двухфононными особенностями от колебательных мод Zr.

Спектр оптического поглощения $\alpha(h\nu)$ в диапазоне энергий кванта 1.2–5.0 эВ для пленки ${\rm ZrO_{1.7}}$ практически совпадает со спектром ${\rm Zr}$ (рис. 4а). Для ${\rm ZrO_2}$ в данном диапазоне энергий поглощение отсутствует. Для ${\rm ZrO_{1.7}}$ и ${\rm Zr}$ наблюдается аномальная дисперсия показателя преломления $n(h\nu)$ при $h\nu < 4.0$ эВ: монотонное уменьшение с ростом энер-

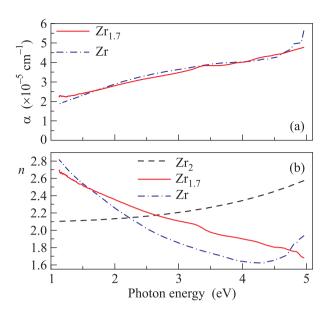


Рис. 4. (Цветной онлайн) Спектральные зависимости $\alpha(h\nu)$ (a) и $n(h\nu)$ (b) в ${\rm ZrO_2}$, ${\rm ZrO_{1.7}}$ и ${\rm Zr}$

гии кванта (рис. 4b). ${\rm ZrO_2}$ имеет характерную для диэлектриков нормальную дисперсию $n(h\nu)$ в диапазоне $h\nu < E_{\rm g}$: значение $n(h\nu)$ монотонно возрастает от 2.10 до 2.57 с ростом энергии кванта. Полученные спектры для ${\rm Zr~O_2}$ хорошо согласуются с литературными данными [26]. Таким образом, спектроэллипсометрические измерения подтверждают наличие металлической фазы в исследуемой нестехиометрической пленке ${\rm ZrO_{1.7}}$ и показывают, что ее оптические свойства определяются металлическим ${\rm Zr.}$

Модельная структура ${\rm ZrO}_x$, предполагающая расположение ${\rm ZrO}_y$ либо на границе ${\rm ZrO}_2/{\rm Zr}$ либо в объеме ZrO₂, представлена на рис. 5а. В данной модели флуктуации химического состава ZrO_x вызывают локальные флуктуации E_{g} в диапазоне 0-5.5 эВ и потенциала для электронов и дырок. Зная значения электронного сродства ${\rm ZrO_2}~\chi=2.1~{\rm aB}~[13]$ и работы выхода $Zr\ W = 4.1\,\mathrm{pB}$, можно построить энергетическую диаграмму ${\rm ZrO}_x$ (рис. 5a). Максимальный масштаб флуктуаций положения дна зоны проводимости $E_{\rm C}$ и $E_{\rm V}$ в ${\rm ZrO}_x$ составляет 2.0 и 3.4 эВ соответственно. Следовательно, кластеры Zr в ZrO_x являются глубокими потенциальными ямами для инжектированных электронов и дырок. Это позволяет использовать ${\rm ZrO}_{x<2}$ в качестве запоминающей среды элементов флэш-памяти, при условии низкой концентрации ловушек, через которые возможно растекание заряда.

В отличии от модели флуктуации потенциала Шкловского-Эфроса, основанной на пространственных флуктуациях концентрации заряженных доно-

6

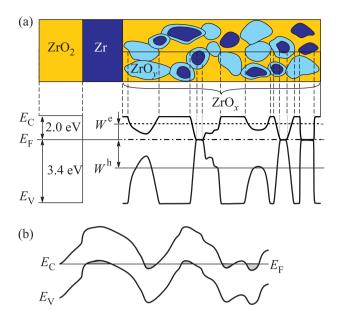


Рис. 5. (Цветной онлайн) (а) — Двумерная модель строения ${\rm ZrO}_{x<2}$ и энергетическая диаграмма для произвольно выбранного сечения такой структуры в контакте с ${\rm ZrO}_2/{\rm Zr}$. (b) — Одномерная модель флуктуаций потенциала Шкловского—Эфроса

ров и акцепторов в компенсированном полупроводнике и неизменном значении $E_{\rm g}$ [27] (рис. 5b), в ${\rm ZrO}_x$ имеет место нейтральность в каждой точке пространства. Кроме того, в ${\rm ZrO}_x$ локальное электрическое поле для электронов и дырок направлено в одну сторону и способствует их локализации в одной локальной области пространства. Проводимость полупроводников с флуктуациями потенциала описывается теорией протекания и осуществляется за счет возбуждения электронов/дырок с уровня Ферми $E_{\rm F}$ на уровень протекания для электронов $W^{\rm e}$ /дырок $W^{\rm h}$ [27]. Аналогичная модель структуры ${\rm HfO}_x$ и теория протекания объясняют температурную зависимость проводимости в низкоомном состоянии элемента RRAM на основе ${\rm HfO}_x$ [28].

Итак, изучена атомная и электронная структура ${\rm ZrO}_{x<2}$, синтезированного методом IBSD. По данным фотоэлектронной спектроскопии в ${\rm ZrO}_x$ состоит из стехиометрического ${\rm ZrO}_2$, металлического ${\rm Zr}$ и субоксидов ${\rm ZrO}_y$. Рамановское рассеяние и спекроэллипсометрия подтверждает наличие металлической фазы. Установлено атомное отношение x=1.7 исследуемой пленки, что позволило оценить стехиометрию субоксида циркония y=1.5. Оптические свойства ${\rm ZrO}_x$ определяются металлическим ${\rm Zr}$.

Предложена модель флуктуаций потенциала для электронов и дырок в ${\rm ZrO}_{x<2}$, согласно которой нанокластеры ${\rm Zr}$ являются потенциальными ямами

(ловушками) с глубиной 2 эВ для электронов и 3.4 эВ для дырок. Это открывает возможность использования ${\rm ZrO}_{x<2}$ в качестве запоминающей среды элементов флэш-памяти с существенно большим временем жизни локализованного заряда (хранения информации), чем для флэш-памяти на основе ZrO₂, в котором в качестве ловушек выступают вакансии кислорода с энергий локализации заряда около 1.2 эВ [9]. На основе пространственных флуктуаций химического состава и модели флуктуаций потенциала в $ZrO_{x<2}$ можно сделать вывод, что для описания транспорта заряда в резистивных элементах памяти на основе ${\rm ZrO}_{x<2}$ следует использовать теорию протекания в случайном потенциале Шкловского-Эфроса [27]. Для верификации данного утверждения необходимо проведение соответствующих экспериментов по проводимости $ZrO_{x<2}$.

Работа выполнена в рамках государственного заказа # 0306-2016-0004. Моделирование осуществлялось на базе Информационно-вычислительного центра Новосибирского государственного университета.

- G. Congedo, A. Lamperti, L. Lamagna, and S. Spiga, Microelectronic Engineering 88 (7), 1174 (2011).
- J. X. Chen, J. P. Xu, L. Liu, and P. T. Lai, Appl. Phys. Express 6, 084202 (2013).
- X. D. Huang, R. P. Shi, and P. T. Lai, Appl. Phys. Lett. 104, 162905 (2014).
- D. Lee, H. Choi, H. Sim, D. Choi, H. Hwang, M. J. Lee, S. A. Seo, and I. K. Yoo, IEEE Electron Dev. Lett. 26, 719 (2005).
- I. Karkkanen, A. Shkabko, M. Heikkila, M. Vehkamaki, J. Niinisto, N. Aslam, P. Meuffels, M. Ritala, M. Leskela, R. Waser, and S. Hoffmann-Eifert, Phys. Status Sol. A 212, 751 (2015).
- 6. D. Panda and T.Y. Tseng, Thin Solid Films **531**, 1 (2013).
- 7. M. V. Ganduglia-Pirovano, A. Hofmann, and J. Sauer, Surf. Sci. Rep. **62**, 219 (2007).
- 8. J.L. Lyons, A. Janotti, and C.G. van de Walle, Microelectronic Engineering 88, 1452 (2011).
- J. H. Hur, S. Park, and U. I. Chung, J. Appl. Phys. 112, 113719 (2012).
- F. Pan, S. Gao, C. Chen, C. Song, and F. Zeng, Materials Science and Engineering: R 83, 1 (2014).
- T. V. Perevalov, D. V. Gulyaev, V. S. Aliev, K. S. Zhuravlev, V. A. Gritsenko, and A. P. Yelisseyev, J. Appl. Phys. 116, 244109 (2014).
- 12. Д.В. Гуляев, Т.В. Перевалов, В.Ш. Алиев, К.С. Журавлев, В.А. Гриценко, А.П. Елисеев, А.В. Заблоцкий, ФТТ **57**, 1320 (2015).
- V. V. Afanas'ev and A. Stesmans, J. Appl. Phys. 102, 081301 (2007).

- 14. T.V. Perevalov and D.R. Islamov, ECS Transactions 80, 357 (2017).
- M. S. Lebedev, V. N. Kruchinin, M. I. Lebedeva, and E. V. Spesivtsev, Thin Solid Films 642, 103 (2017).
- T. S. Jeon, J. M. White, and D. L. Kwong, Appl. Phys. Lett. 78, 368 (2001).
- M. S. Kim, Y. D. Ko, J. H. Hong, M. C. Jeong, J. M. Myoung, and I. Yun, Appl. Surface Science 227, 387 (2004).
- J. Zhang, A.R. Oganov, X.F. Li, M.M.D. Esfahani, and H.F. Dong, J. Appl. Phys. 121, 155104 (2017).
- V. A. Gritsenko, T. V. Perevalov, and D. R. Islamov, Phys. Rep. 613, 1 (2016).
- Т.В. Перевалов, В.А. Гриценко, Д.Р. Исламов, И.П. Просвирин, Письма в ЖЭТФ 107, 62 (2018).
- C. Morant, A. Fernandez, A. R. Gonzalezelipe, L. Soriano, A. Stampfl, A. M. Bradshaw, and J. M. Sanz, Phys. Rev. B 52, 11711 (1995).

- K. H. Xue, P. Blaise, L. R. C. Fonseca, and Y. Nishi, Phys. Rev. Lett. 110, 065502 (2013).
- P. Barberis, T. MerleMejean, and P. Quintard, J. Nucl. Mater. 246, 232 (1997).
- A. P. Naumenko, N. I. Berezovska, M. M. Biliy, and O. V. Shevchenko, Phys. and Chem. Solid State 9, 121 (2008).
- G. A. Gogotsi, Refractories and Industrial Ceramics 38, 224 (1997).
- P. Petrik, A. Sulyok, T. Novotny, E. Perez-Fero,
 B. Kalas, E. Agocs, T. Lohner, D. Lehninger,
 L. Khomenkova, R. Nagy, J. Heitmann, M. Menyhard,
 and Z. Hozer, Appl. Surface Science 421, 744 (2017).
- 27. Б. И. Шкловский, А. Л. Эфрос, УФН 117, 401 (1975).
- V. N. Kruchinin, V. S. Aliev, T. V. Perevalov, D. R. Islamov, V. A. Gritsenko, I. P. Prosvirin, C. H. Cheng, and A. Chin, Microelectronic Engineering 147, 165 (2015).