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We report measurements of a two-dimensional variable-range hopping conductance in delta-doped Ge/Si
heterostructures with a layer of Ge nanometer-scale quantum dots. We found that the conductance σ vs.
temperature T follows the Efros-Shklovskii behavior σ = σ0 exp[−(T0/T )1/2] with the temperature-
independent prefactor σ0 ∼ e2/h. A strong reduction of the measured value of T0 from that calculated
for single-particle hopping was observed. All these results provide a manifestation of interaction-driven
many-electron correlated hopping in dense arrays of quantum dots.

1 Introduction In general, the temperature dependence of the conductivity for variable-rangle hop-
ping (VRH) is given by σ(T ) = σ0(T ) exp[−(T0/T )x]. VRH conductivity in the presence of long-range
Hartree interaction between localized single-particle excitations obeys the Efros-Shklovskii (ES) law [1]
σ(T ) = σ0 exp[−(T0/T )1/2], where kBT0 = Ce2/κξ is the characteristic interaction energy scale, C
is a numerical coefficient that depends on dimensionality, kB is the Boltzmann constant, κ is the rela-
tive permittivity of the host lattice, ξ is the localization length of electrons. Within the mechanism of
phonon-assisted VRH, the prefactor σ0 takes the form σ0 = γ/Tm, where γ is a temperature-independent
parameter and m ∼ 1 [2]. The theoretical value of the constant C for single-particle hopping in two
dimensions (2D) is C � 6 [2, 3].

Several authors have argued that under certain conditions dc VRH conduction can be dominated by
many-particle Coulomb correlations between electronic transitions [4, 5]. Sequential correlations appear
when the hops of an electron facilitates the hopping probability of another electron due to rearrangement
of the local potentials and/or site occupations in the vicinity of the initial and final states for tunneling
process. There can be also interaction-driven simultaneous hopping of several electrons resulting in a
lowering of the energy configuration of the system. Because formation of such dressed polaron state
provides partial screening of Coulomb interaction at large distances, the characteristic interaction energy
in correlated hopping is reduced relative to its single-particle value [6, 7]. Pérez-Garrido et al. [4] showed
that in a regime of many-particle excitations, σ(T ) dependence has the ES form with numerical constant
C = 0.6 ± 0.2, i.e., the parameter T0 turns out to be about one order of magnitude smaller than Efros
and Shklovskii’s prediction for single-electron hoping. A reduction of hopping constants from the single-
particle value in gated GaAs/AlGaAs heterostructures has been observed in [8]. Kozub, Baranovskii and
Shlimak, assuming that interaction-assisted fluctuations of energies of hopping sites have spectral density
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Fig. 1 a) Temperature dependence of the logarithmic derivative w(T ) = ∂ ln σ(T )/∂ ln T for sam-
ples with different average numbers of holes per one Ge QD. The solid lines are least-square fits to
linear dependence. b) The conductance σ(T ) vs T−1/2 for different dot occupation. Symbols cor-
respond to experimental data, solid lines are approximations of the experimental data using equation
σ(T ) = γ/T m exp[−(T0/T )1/2]. T0, γ, and m are variable parameters.

1/f , demonstrated that sequential Coulomb correlations in a Coulomb glass can result in a phononless
VRH with a temperature-independent universal prefactor σ0 ≈ e2/h [5].

Usually, gated disordered semiconductors are exploited to look for the many-particle correlations in 2D
VRH. To drive conductivity of the system, one is obliged to change carrier concentration thereby approach-
ing inevitably the metal-insulator transition (MIT). However, since localization degrades the screening of
electron-electron interaction, correlation effects should be particularly important on the insulator side far
from the MIT. From this point of view, we believe that it is more reasonable to use dense arrays of quan-
tum dots (QDs) to study correlated hopping because one can fix QDs density and change only carrier
wavefunctions by varying the dot filling factor, being deep in the insulator phase.

Previously, using an artificial screening provided by a metallic plane, parallel to a layer of Ge QDs
in Si, we have proved that the VRH transport in arrays of self-assembled Ge/Si(001) QDs is strongly
affected by long-range interactions [9]. In this paper, we examine in detail measurements of 2D variable-
range hopping conductance in delta-doped Ge/Si heterostructures with a layer of Ge nanometer-scale QDs
grown by molecular-beam epitaxy in the Stranskii-Krastanov growth mode. The average size of the dot
base length is around 10 nm, the height is ∼ 1 nm. The areal density of the dots is nQD = 4× 1011 cm−2.
To supply holes on the dots, a boron δ-doping Si layer inserted 5 nm below the Ge QD layer was grown.
After spatial transfer, the average number of holes per dot was varied from Nh = 1/2 to Nh = 5 by
varying the doping. The sample preparation and data analysis are described in detail elsewhere [10].

2 Temperature dependence of conductivity In order to obtain detailed information on the functional
dependence σ(T ), we used the differential method for an analysis of the temperature dependence of the
reduced activation energy [11] w(T ) = ∂ lnσ(T )/∂ lnT = m + x(T0/T )x. In this approach, if m �
x(T0/T )x, then log w(T ) = A− x log T , and A = x log T0 + log x. Plotting log w as a function of log T ,
one can find the hopping exponent x from the slope of the straight line. The parameter A can be found by
the intersection point of the straight line with the ordinate axis, which gives the characteristic temperature
T0 = (10A/x)1/x. Typical plots of log w(T ) versus log T for several samples are given in Fig. 1 a. At
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Fig. 2 Dependence of the conductivity prefactor and numerical parameter C associated with variable-
range hopping in arrays of Ge/Si quantum dots on the average number of holes in QDs.

T < 10 K, a linear relationship is observed between log w(T ) and log T , implying that m � x(T0/T )x

at these temperatures. From the slope angle of the approximating straight lines (solid lines in Fig. 1 a), we
found that the exponent x takes approximately the same value x = 0.51 ± 0.05 for all samples.

Because it was already established that x � 0.5, the method of non-linear regression can be used for
further determining the exponent m in the region of low temperatures. With this aim, the experimental
data σ(T ) at T < 10 K were approximated by the equation σ(T ) = γ/Tm exp[−(T0/T )1/2], and the
parameters γ, m and T0 were varied to obtain the best fit. Figure 1 b shows the conductivity in units of
e2/h, the quantum of conductance, of samples with different QD occupation plotted versus T−1/2; the
symbols are the experimental points and the solid lines are the least-squares fits to the ES equation. We
found that m lies in the region 0.16±0.09. This means that the conductivity prefactor σ0 virtually does not
depend on temperature at low T and signals against the conventional phonon-assisted hopping mechanism.

The dependence σ0(Nh) is presented in Fig. 2. An impressive feature is that the prefactor having a value
of order e2/h is not constant but quantized in units of the conductance quantum. Although, currently, there
is no preconceived explanation of the oscillating behavior of σ0, we consider universality of the prefactor
as a manifestation of the 2D VRH conduction stimulated by the sequential Coulomb correlations [5].

To obtain further evidence for correlated VRH in arrays of Ge/Si QDs, it is necessary to measure the
ES characteristic temperature T0 and compare it with the theoretical predictions. In fact, since T0 depends
on the localization length ξ and hence on the electronic configuration of occupied hole state in the dots, it
is more convenient to find the universal constant C whose value is inverse proportional to intensity of the
many-particle effects. It may be done taking into account the values of T0 and ξ.

3 Analysis of the parameters associated with VRH in Ge/Si QDs Asymptotic values of the hole
localization length resulting from hole tunneling between coupled Ge/Si quantum dots were obtained by
computer modeling. The simulation was performed on a square lattice of 15 × 15 sites with the lattice
constant n

−1/2
QD + δr, where δr is a random value with a Gaussian distribution. Only overlapping between

nearest neighbours were included. We use the Hamiltonian

Ĥ =
∑

i,α

Ei,αâ+
i,αâi,α +

∑

i,j,α,β

Ji,j,α,β â+
j,β âi,α, (1)

where index i counts the dots, index α denotes the hole bound state number in QD (we consider only nine
bound states in each dot); â+

i,α (âi,α) the creation (annihilation) operator for a hole in state α of ith QD,
Ei,α is the hole energy in this state, Ji,j,α,β is the integral of overlapping between the αth state in ith
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QD and βth state in jth QD. The random hole energies Ei,α were taken as the size-quantization energies
in quantum dots whose dimensions are characterized by a Gaussian distribution with the mean square
deviation of 20%. Dependence of the energy levels on dot size has been calculated previously using the
sp3 tight binding model with inclusion of spin-orbit interaction and deformation effects [12].

The following procedure was used to determine the overlap integrals. We calculated energies of hole
states in a model structure containing Ge quantum dot inside a Si box. Periodic boundary conditions,
ψ(−d/2, y, z) = ψ(d/2, y, z) or ψ(−d/2, y, z) = −ψ(d/2, y, z), where d is the box size in x direction,
ψ(x, y, z) the hole wave function, were considered. The same boundary conditions were used for the y and
z directions. Overlap integral in plane of QD array in x direction was defined as J(d) = |E+ − E−|/4,
where E+ and E− are the hole energies corresponding to the boundary conditions given above. The
obtained dependence J(d) can be rewritten in the form J(d) = Aα exp(−Bαd), where coefficients Aα

and Bα depend on the energy level number α, and Bα equals to the inverse localization length of a hole
in α state of isolated QD. Integrals Ji,j,α,β were determined as geometrical mean of overlap integrals
between α and β states: Ji,j,α,β =

√
Ji,j,α,αJi,j,β,β =

√
AαAβ exp[−(Bα + Bβ)dij/2], where di,j is

the distance between QDs. Simulation was carried out using 5000 random realizations of QD array with
the filling factor 1/2 for the ground s-state or for the first excited p-state in the dots. For each realization,
we calculated probability pi of hole to occupy corresponding s- or p-state in each dot. The probability
value was then approximated by the equation pi = a exp(−2di/ξr), where di is the distance between ith
QD and the dot with maximum local hole wavefunction amplitude. Localization length ξ was obtained
by averaging ξr through all array realizations. We found ξ = 2.3 nm for Nh ≤ 2 and ξ = 2.8 nm for
2 < Nh ≤ 6.

It now remains to determine the magnitude of C using equation C = kBT0/(e2/κξ) and experimental
values of T0. These results are presented in Fig. 2. The value of hopping constant turns out to be C =
0.9±0.4. This implies that characteristic interaction temperature T0 is considerably smaller than the value
from simulation of single-electron transport that provides an additional argument in favor of correlated
hopping in 2D arrays of Ge/Si quantum dots.

4 Summary In summary, we have investigated the variable-range hopping transport of holes in Ge/Si
self-assembled quantum dots. We find the universal temperature-independent conductivity prefactor σ0 ∼
e2/h and demonstrate the hopping constant C to be much smaller that the single-particle value. We believe
that our results provide experimental evidence for many-electron correlated hopping in two-dimensional
arrays of quantum dots.
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