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The scope of this article is to review the formation mechanisms, variety of electronic and optical
phenomena, as well as possible device-oriented applications, in Ge/Si self-assembled quantum
dots that have been synthesized by molecular-beam heteroepitaxy. A difference of this review from
the other existing works on physics of Ge/Si nanostructures is that we will focus on the fundamen-
tal aspects and device applications of the dots whose size is extremely small (∼10 nm) and the
electronic states resemble certainly those of an atom even at room temperature.
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1. INTRODUCTION

The two last decades have witnessed the emergence of
a new branch of semiconductor physics that studies the
behavior of electrons confined in precisely tailored man-
made potential. This field has developed from the obvi-
ous progress in technology that now allows for the routine
fabrication of nanometer-scale solid state structures that
contain small number of conduction electrons (<100) in
geometries of size comparable to their de Broglie wave-
length. Usually they are called “quantum dots” (QDs),
referring to their quantum confinement in all three spa-
tial dimensions. The three-dimensional confinement leads
to formation of a discrete carrier energy spectrum, resem-
bling that of an atom. Next to this purely quantum effect,
an important element of electronic transport through QDs
is Coulomb blockade. An extra electron can only be added
to the dot if enough energy is provided to overcome the
Coulomb repulsion between the electrons. Studying the
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QD systems has proven to be a fertile experimental and
theoretical endeavour, in which the discreteness of charge
carried by a single electron and the interplay of quantum
effects become manifest in striking ways.1

A common way to fabricate a single QD is to restrict
the two-dimensional electron gas in a semiconductor
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heterostructure laterally by electrostatic gates, or vertically
by etching techniques. This creates a bowl-like potential
in which the conduction electrons are trapped. In a single
QD weakly coupled by tunneling barriers to two leads, the
interplay of single-electron charging effects and resonant
tunneling through quantized states leads to conductance
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oscillations as the electrochemical potential of the dot
is tuned. This phenomenon underlies the working of
nanoscale single-electron transistors which have a number
of practical uses, ranging from metrology to computing.
Recently, research focused on double-dot systems2 whose
behavior is found to be mainly affected by electrostatic
coupling between the two dots inside the artificial molecu-
lar. The next step is to create and study macroscopic arrays
of close packed QDs, which are required for the devel-
opment of semiconductor lasers,3 photodetectors,4 single-
photon devices,5 as well as quantum computation.6

An elegant way to fabricate large-scale arrays of zero-
dimensional semiconductor structures is based on strain-
induced self-assembly of islands during heteroepitaxial
growth of lattice mismatched materials. Ge on Si(001)
(4.2% lattice mismatch) is one of the best studied systems
exhibiting a self-organization of nanostructures in semi-
conductor heteroepitaxy. Electronic and opto-electronic
nanodevices implemented on Ge self-assembled quantum
dots (SAQDs) in Si matrix have attracted much attention
due to their compatibility with modern Si-based comple-
mentary metal-oxide-semiconductor circuitry. This would
offer a substantial reduction in complexity and cost of
future high performance electronics. Considerable work
has been done on the growth of Ge dots and important
results have been discussed in recent reviews.7–12 In this
paper we will discuss the physics and several device
aspects of Ge/Si nanostructures with SAQDs whose size
is extremely small (∼10 nm) with the motivation of rele-
vance of such systems for realizing quantum devices oper-
ating at room temperature.

2. STRAIN-DRIVEN QUANTUM DOT
SELF-ASSEMBLY

Elastic deformations in epitaxial films is the key factor that
not only causes the morphological planar-to-island film
transition (Stranski-Krastanov mechanism) but also effects
the further stages of island evolution, including the shape,
size, composition, and spatial distribution of the islands.
In this section, the discussion deals with experimental data
on the process of formation of self-organized Ge islands
on pure and oxidized Si(100) surface.
The germanium on silicon heterosystem has been used

for a long time to study the two-dimensional to three-
dimensional transition. Phenomena of nanoisland self-
organization are of interest to several areas of solid-state
physics. For physics of surface and condensed media, the
actual importance are studies of the mechanisms of nano-
structure growth and atomic processes occurring on the
surface during the growth. However, these objects also
are of interest to semiconductor physics because of their
potential application as quantum-sized nanostructures.
When synthesized at relatively low temperatures, these
islands are free of misfit dislocations even though they
reach the size larger than the critical thickness.

Dislocation-free germanium islands of 10 to 100 nm in
size are detected on the Si(100) surface after formation of
a continuous Ge film.13

The islands can be downsized when germanium is
deposited at a lower temperature. The smallest germa-
nium islands growing on the pure silicon surface are about
10 nm in lateral size and much smaller in growth direction.
The size can be also reduced when Ge later is deposited
on the oxidized atomically pure surface prepared in situ
in the MBE installation. It has been known for long time
that the oxide layer can be generated on the silicon surface
under vacuum conditions. Possibility of choosing regimes
of etching and growth of the oxide film depending on oxy-
gen pressure and temperature has been demonstrated for
the first time elsewhere.14 Growth of germanium islands
on the pre-oxidized silicon surface allows the islands to
be decreased considerably in size at a higher density. The
islands grown on the oxidized Si(111) surface are shown
to be 10 nm in lateral size at the density higher than
1012 cm−2 (Refs. [15, 16]). The authors of Ref. [15] sup-
posed that this is the case of local disoxidation of silicon
by germanium accompanied by desorption of germanium
monoxide. Germanium nanoislands conjugated coherently
with silicon are nucleated in these sites.

2.1. Basic Concepts

Three stages of nucleation and evolution of three-
dimensional (3D) islands can be classified. Basic regular-
ities of the island nucleation in an epitaxial heterosystem
are determined by the balance between the film and sub-
strate surface energies, as well as between the film-
substrate interface energy and the intrinsic energy of the
island bulk. The free energy of a newly formed nucleus on
the substrate surface can be a sum of three terms:17

�G=−V��+�s+Ei

(
V �
h

l

)
(1)

Here the first term is the work function of formation of
a new nucleus of volume V with �� as the thermody-
namic driving force of crystallization (supersaturation); the
second term is the work function for producing an extra
surface s with � as the nucleus surface energy. The third
term is the additional energy due to elastic deformation of
the nucleus. The first two terms represent the classical ver-
sion of the nucleation theory (see, e.g., Ref. [18]), while
the last term cannot be assigned to any process but to the
growth of strained films. At a high lattice mismatch, for
example, at one inherent in the Ge–Si system, the addi-
tional energy is a function of not only the nucleus volume
but also the shape, h/l (the height to cross-size ratio of the
nucleus), it being essential for the two-dimensional (2D)
to 3D transition. From computing by Müller and Kern, the
contribution of this term looks like a rapidly drop-down
function of h/l. The more apparent three-dimensionality
of the strained nucleus, the lower is the contribution of the
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strain energy to the free energy of the nucleus. The surface
energy of the system of Ge film (Ge island)–Si substrate
is also dependent on the Ge layer thickness (and on the
shape of the Ge island).17�19

As the first approximation, the strain energy lowering
at the island tops due to the elastic relaxation is the key
factor of the transition from two-dimensional to three-
dimensional growth modes of pseudomorphous films, with
the mismatch strains being of crucial importance. For
the case of homoepitaxy at a sufficiently pure surface of
almost all semiconductors, 3D islands are not formed but
the films grow either through step propagation (step-layer
growth mode) or through nucleation and coalescence of
2D islands. It will be demonstrated below that the strains
contribute considerably to the evolution and size distribu-
tion of 3D islands.
In Refs. [20, 21], the crucial role of the elastic strain

relaxation in the morphological instability of the film sur-
face has been shown. The underlying idea of this model is
that the roughened surface of the strained layer possesses
a lower total energy due to the elastic strain relaxation at
the tops of ridges. An increase in the surface energy is
the factor that counteracts the evolution of the film relief
but causes only a partial decrease in the energetic gain
due to the relaxation. The higher the film-to-substrate lat-
tice mismatch, the lower the thickness at which the pseu-
domorphous film becomes morphologically unstable. The
formation of islands is the extreme case of the morpholog-
ical instability of strained films. It is normally observed in
the systems with a high film-to-substrate lattice mismatch
(4% for the Ge–Si system). If the surface energy of the
newly formed phase is diminished in any way, the mor-
phological instability of the strained film may be achieved
at a low-lattice mismatch.
In line with the classical considerations,22 the process

of formation of a new phase involves basic stage of nucle-
ation, independent growth of the nuclei and, finally, evo-
lution of the nuclei in cooperation with one another, the
so-called Ostwald ripening (OR). The latter is the latest
stage of the growth of nuclei of the new phase in time.
If the study is aimed at synthesis of an island film (that
is just the case under consideration), then OR is the
key stage controlling the nature of the island size dis-
tribution. For this reason, great attention is paid to the
problem of applicability of the OR model to analysis of
the processes of quantum-sized cluster self-assembling in
Ge–Si.
Experimental observations of the evolution of 2D sil-

icon islands on Si(001) surface are in good agreement
with the OR model (see, e.g., Ref. [23]). At the starting
point, the substrate surface is covered by a supersaturated
adsorbate. The first stage is the nucleation of 2D islands.
The next stage is the island growth when the supersat-
uration is lowered around the islands but the latter do
not as yet interact. Therefore, nucleation continues at the

sites away from already formed islands. After the areas of
diffusive “nutrition” of the islands have been overlapped
and the supersaturation level falls down in gaps between
the islands, the probability of new nucleation decreases,
and the third stage begins. This is the stage of correlated
growth of islands, or Ostwald ripening. Large islands grow
and small islands disappear. This stage can take a long
time if the system is closed and the amount of adatoms is
less then one monolayer. The size distribution of islands
is a reproducible function that depends essentially on the
substrate orientation.
Lifshitz and Slyozov24 stated, in particular, that elas-

tic deformations in grains as the second-order factor may
be taken into consideration but do not influence essen-
tially the nature of the final distribution. Indeed, for the
three-dimensional case under consideration by Lifshitz and
Slyozov, strains in 3D grains of the new material may be
treated as an extra portion of free energy of the cluster,
which effects the rate of the cluster nucleation and growth.
The latest studies have demonstrated that elastic deforma-
tions in epitaxial films and in emerging 3D islands are the
key and multivalued factor. There are many cases when
this factor makes dramatic changes to the classical set of
phase-formation mechanisms. For example, for the case
of Ge-on-Si, the occurrence of these deformations leads
to transition from the layer-by-layer growth to nucleation
of 3D clusters at the surface of the underlying Ge layer
(i.e., to the achievement of the Stranski-Krastanov mecha-
nism). Remarkable inhomogeneity of the elastic relaxation
of the islands along their heights causes shape-dependent
elastic relaxation (i.e., energetic profit). As a result,
several discrete cluster shapes “hut,” “dome,” “super-
dome”) arise, which are the most energetically favor-
able. Elastic deformations at the cluster base and in the
adjacent substrate region increase as the cluster increases
in size.25 The elastic deformations and their relaxation in
islands can, under certain conditions, predominate until
a quasiequilibrium state is established. In this case, the
shape and size distribution of the ensemble of islands are
time-independent.

2.2. Growth of Ge Self-Assembled Quantum Dots
on Si(100) Surface

Several stages of island evolution were experimentally
observed in Ge–Si heterosystems during the increase of
the film effective thickness. These stages are different for
the (001) and (111) substrate surfaces. In terms of gener-
ation of quantum-size objects, the (001) surface is unique:
this is the only surface where compact dislocation-free
3D islands of 10–100 nm were discovered. These islands
appear upon formation of a continuous Ge film (wetting
layer). The start of 3D cluster nucleation is accompanied
by appearance of strikes in the reflection high energy elec-
tron diffraction (RHEED) patterns, which are assigned to
electron scattering at {105} planes. These islands were

122 J. Nanoelectron. Optoelectron. 1, 119–175, 2006



R
E
V
IE
W

Yakimov et al. Germanium Self-Assembled Quantum Dots in Silicon for Nano- and Optoelectronics

called hut clusters26 because of their shape. As the average
film thickness increases, RHEED patterns start showing
{113} and {102} planes along with {105}. The formation
of dome clusters is characteristic of this stage. On pass-
ing from hut clusters (10–20 nm in lateral size) to dome
clusters (50–100 nm), the relaxation level of mechanical
strains increases. After Floro et al.,27 the material is elas-
tically relaxed by 20% in hut clusters but by more than
50% in dome islands because of their higher aspect ratio.
In the latter case, the islands keep on coherency with
the substrate. From numerous experimental observations,
the last stage of morphological and structural evolution of
Ge islands on Si(001) and Si(111) is the formation and
rapid growth of plastically deformed 3D islands with mis-
fit dislocations at the island-substrate interface (see, e.g.,
Ref. [28]).

2.3. Self-Assembling

It was mentioned above that the surface morphology is
of considerable importance in ordering of 3D islands
formed on this surface. This factor can be used to control
ordering of both shape and spatial distribution of islands.
Surface parameters can be controlled by the following
ways:
— The use of substrates misoriented from the (001) sur-
face and the respective methods for step ordering. The
steps are used as patterns for island nucleation.
— The use of surfactants to modify surface characteristics
(surface energy, adatom diffusion length) of both substrate
and epitaxial layer.
— Generation of microstrains on the substrate surface
to initiate island nucleation in the desirable sites (layer
stacking).
— Lithographic patterning: creation of windows on the
substrate to confine the range of assembling of adatoms
into an island and to isolate the islands. Photolithographic
formation of facet planes for localization of nucleation of
Ge islands.

Considerable attention was given to the size distribu-
tion of Ge islands since this parameter of QD systems is
of extreme practical importance. The more narrow distri-
butions for dome clusters are accounted for by the fact
that the accumulation of elastic deformations in the sub-
strate and in the cluster bottom at an increase in the cluster
size results in a deceleration of the cluster growth rate
(in contrast to the island evolution according to the OR
mechanism). The growth rate of Ge hut clusters decreased
with an increase in the cluster size. This effect is studied
in more detail in Ref. [25]. The result is the remarkable
narrowing of the island-size distribution. The most uni-
form size distribution of Ge islands (∼3%) was reported
in Ref. [29]. The authors assert that such a narrow distri-
bution was obtained due to a very careful choice of island
growth conditions.

Almost simultaneous nucleation of islands throughout
the substrate surface can be achieved if a considerable
supersaturation of germanium adatoms is provided at
the earliest instance of the growth process, for example,
through a momentary increase of the molecular flux or
a short-time reduction of the substrate temperature. So-
called the synchronizing effect of periodical short-term
variations in the surface supersaturation on the 2D nucle-
ation earlier was realized at homoepitaxy of Ge and Si.30

Later, an optimized method for synthesis of quantum struc-
tures such as vertical superlattices, quantum wires or QDs
at cyclic supersaturation for growing each atomic layer
constituting the film was proposed and substantiated.31

The weakest kind of ordering is areal ordering due to
a weak interaction between the islands at the earliest stage
of their growth. Therefore, pregeneration of ordered sites
for nanocluster nucleation is the most attractive way to
obtain their spatially ordered state. The spatial ordering
increases with increasing coverage (ratio of the total island
area to the substrate surface area) because of minimization
of repulsive forces of elastic interaction between adjacent
islands. Therefore, the highest spatial ordering is observed
for island arrays that occupy most of the substrate surface.
The successive growth of layers with Ge islands to be

covered by the material matching the substrate (Si) was
shown to enhance island ordering in both their size
and surface area.19 Cluster-induced disturbance of elastic
deformation fields penetrates for various distances into the
covering layer, depending on the volume of an individual
island and on island agglomeration. Sites for preferable
nucleation of new islands at the next “floor” are formed
at the surface of the covering layer. Control of the thick-
ness of the covering layer makes it possible to minimize
the effect of “weak” islands. Both theoretical and exper-
imental studies in the field were accomplished; several
identical examples were given for Ge–Si systems.19�32

These multilayer heterostructures with QDs are of practi-
cal importance for innovative research fields (e.g., electron
bonding of clusters through vertical, synthesis of 3D lat-
tices comprising islands-clusters often referred to as “arti-
ficial atoms”).33�34

2.4. Size and Density of
Self-Assembled Quantum Dots

Experience shows that traditional methods for generation
of germanium quantum dots do not allow the QD size to be
considerably decreased and the density increased. Among
the promising ways are
— Growth of germanium islands on SiO2 synthe-
sized immediately before deposition of Ge in a MBE
installation.
— Low-temperature growth.
— Growth in prepatterned oxide windows.
— Formation of islands during growth of the wetting
layer.
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GeSi hut and dome clusters sizes are seen to increase
with the concentration of Si in the GeSi solid solution.35

As the proportion of Si increases, strains are decreased in
the cluster, and the necessary energetic gain due to the
elastic relaxation of islands is attained at their larger sizes.
Solid GeSi solutions, because of their relatively large sizes,
are very suitable for model experiments aimed at elucidat-
ing basic regularities of the island formation.27 However,
the practical interest is focused on the systems with not
larger than 10-nm nanoislands (pure Ge on Si) because of
the possibility in optoelectronic applications. The islands
density is again of much importance. The system response
to an external action is in direct relationship with the num-
ber of islands and with the island density. Both param-
eters (size and density) depend on such growth conditions
as substrate temperature and growth rate. A decrease in
the growth temperature, as well as an increase in Ge
flux, results in a shortening of the diffusion length of Ge
adatoms through the substrate. Correspondingly, the range
of adatoms assembling for one island is contracted; the
island decreases in size but the density of island increases.
Abstreiter et al.36 could vary the density of islands in the
regular manner up to the density of 1010 cm−2 by decreas-
ing the growth temperature to 550 �C and increasing the
Ge flux. The further decrease of the growth temperature to
300 �C allowed the density of Ge islands to be increased to
∼ 3×1011 cm−2 (Ref. [37]) (Fig. 1). Peng et al.38 reached
the highest density of Ge islands on Si(100) surface (5×
1011 cm−2) using antimony as a surfactant to decrease the
surface diffusion length of Ge adatoms.
It is possible to reduce the QD dimension by grow-

ing germanium on the oxidized atomically pure surface
prepared in situ in the MBE chamber. Depending on the
thickness of the deposited germanium layer on silica sur-
face, the islands are different in size and density. At the
film not thicker than five monolayers (ML), the islands
are less than 10 nm in base diameter and have the den-
sity higher than 2× 1012 cm−2 (Ref. [39]) (Fig. 2(a)).
These samples were also used for HREM studies in plan-
view and cross-sectional conditions. Figure 3 shows perti-
nent TEM images.40 An increase in the effective thickness
of deposited germanium results in formation, along with
small sized islands, of islands with the size larger by an
order of magnitude at a considerably lower density. Their
lateral size reaches 200 nm and the density of about 1�5×
109 cm−2 (Fig. 2(b)). The large germanium islands are
relaxed and their lattice constant equals to that of bulk ger-
manium. This conclusion also is supported by the presence
of Moire fringes in the electron micrographs. It should
be noticed that the islands are not pronouncedly faceted
but almost spherical in shape. A similar island shape was
observed during in situ STM analysis of Ge islands on
Si(111) surface.15 It looks like the island shape depends
on the presence of an oxide layer but not on the layer
thickness or substrate orientation.

(a)

(b)

Fig. 1. Plan-view STM (a) and cross-section TEM (b) images of Ge
islands on Si(001) surface (deposition temperature Ts = 300 �C, equiva-
lent thicknesses of Ge layer deff = 10 ML).

2.5. In Situ Reflection High Energy Electron
Diffraction Control of Quantum Dot Growth

The strong dependence of the island parameters on the
technological conditions makes it necessary to provide
continuous monitoring of the growing surface of the sub-
strate. The appropriate traditional method is RHEED tech-
nique. A typical example of comprehensive surface study
during heteroepitaxy is presented in Ref. [41]. Of partic-
ular interest are the data on strains in the growing layer,
which are the driving force of the observed morphological
rearrangement. The strains can be estimated from varia-
tions of the lattice constant of the Ge film during the transi-
tion from 2D to 3D growth modes, as well as from changes
of the island shape. The lattice constant of the growing
layer can be determined from variations of the distance
between correspondent spots of the RHEED pattern. The
intensity oscillations were registered in the diffraction pat-
tern in the azimuth [110] along the line intersecting several
reflections, including bulk spots. The experimental data
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Fig. 2. STM image of Ge islands on oxidized Si(001) surface (Ts =
500 �C, deff = 3 ML (a) and 6 ML (b)).

were used for constructing the structure phase diagram41

to show the existence ranges of strained and elastically
deformed continuous and island films depending on Ge
thickness and deposition temperature (Fig. 4).
The process of Ge film growth on silicon oxide surface

was controlled using a RHEED patterns also. The initial
stage of germanium film growth on the oxidized Si sur-
face was analyzed by registering variations in the intensi-
ties of specular reflection and three-dimensional diffraction
reflection (3D-reflection).42 These values were very sensi-
tive to variations in the surface roughness, while appear-
ance of 3D-reflection indicated the presence of 3D objects
on the surface under study. The occurrence of intensity
oscillations of the specular reflection during growth on the
pure surface, extinction of the reflection and appearance of
3D-reflection at the germanium film thickness more than
4 monolayers argue for 2D growth of the wetting layer
followed by formation of three-dimensional islands. As to
the Ge film growth on the oxidized surface, the reflection
intensities are only varied after deposition of one mono-
layer, and the specular reflection intensity does not oscil-
late (Fig. 5). These observations indicate the absence of the
stage of wetting layer formation. While the first monolayer

5 nm

5 nm

(a)

(b)

Fig. 3. Plan-view (a) and cross-section (b) TEM images of Ge islands
on oxidized Si(001) surface (Ts = 500 �C, 3 ML of Ge).

is deposited on the SiO2 surface, an adsorbed Ge layer
is formed that is transformed into 3D islands during the
growth of the second and next monolayers. Therefore, ger-
manium film growth on the oxidized silicon surface is
characterized by the Volmer-Weber mechanism but not by
the Stranski-Krastanov mechanism, which is characteristic
of the growth on pure Si surface.

2.6. Effect of Growth Rate on
Germanium Hut Clusters

As it has been mentioned, several approaches have been
exploited to tune the morphology and structural properties
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Fig. 4. The structure phase diagram which shows the existence ranges
of strained and elastically deformed continuous and island films depend-
ing on the Ge thickness and deposition temperature Ts.
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reflections (dashed line) during growth of Ge film on oxidized Si(100)
surface at different substrate temperatures (1,2: Ts = 550 �C, 3,4: Ts =
450 �C.

of Ge QDs, such as manipulating the Ge growth43 and
overgrowth44 temperatures, the Ge coverage,45 vertical
ordering in QD multilayers,46–48 surfactant-mediated
growth,49�50 deposition on vicinal51 and oxidized52 sur-
faces, ion-beam stimulated growth.53 Another parameter
which can control the formation of QDs through the
kinetic factors is the dot deposition rate R. Little work has
been done on the influence of grown rate on the formation
of Ge/Si(001) nanoclusters. Recently, Cho et al.54 demon-
strated the effect of deposition rate on the spatial distribu-
tion of dome-shaped Ge islands fabricated at high (600 �C)
temperature. McDaniel et al.55 reported on the increase in
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Fig. 6. A series of 150×150 nm2 STM images and size distribution histograms of Ge islands deposited at a substrate temperature of 500 �C with
varying Ge deposition rates. The amount of Ge deposited is 6 ML.

Ge composition as the deposition rate increases also for
dome clusters grown at 650 �C. The situation in all cases
was complicated by shape transitions between pyramids
and domes. In this section we focus on small (<15 nm)
Ge nanoislands which were grown at lower temperature
(500 �C) and have the form of well-defined hut clusters.

In our experiments, we varied the Ge deposition rate
from R= 0�02 ML/s to R= 2 ML/s while maintaining the
substrate temperature, Ts = 500 �C, and the Ge coverage,
6 ML, being the same for all samples. The growth temper-
atures were 500 and 700 �C for the cap and buffer Si lay-
ers, respectively. Immediately after the deposition of Ge,
the temperature was lowered to Ts = 350–400 �C and the
Ge islands are covered by a 2-nm Si layer at that temper-
ature. This is necessary to preserve the shape and size of
Ge islands with subsequent Si capping at higher Ts.

56

The scanning tunneling microscopy (STM) of samples
without the Si cap layer was employed to assess the mor-
phology of Ge layers. Figure 6 shows a series of images
taken at different Ge deposition rates, and the lateral size
histograms derived for each image. Although, some of the
islands did not have a square base, we used their geo-
metrical mean, l = √

a×b (a and b are the island base
lengths), as a convenient measure of their size. The island
size distribution were evaluated by measuring the lateral
dimensions on 200× 200 nm2 or 200× 400 nm2 scans
dependent on the sample until more than 100 islands were
taken into consideration. From these data, the width of the
size distribution, � , was calculated as standard deviation,

�2 = 1
n−1

n∑
i=1

�li−�l��2
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Table I. The surface density of Ge nanoclusters nQD, the Ge island mean size in the growth plane �l�, and the normalized standard deviation of size
distribution �/�l� in layers of Ge islands fabricated at different deposition rates R and evaluated from STM images. The amount of Ge deposited deff

and the channeling minimum yield 	min of Ge (	Ge
min) were obtained in Rutherford backscattering/channeling experiments. c is the Ge content and 
xx

is the average lateral strain in Ge islands determined from Raman measurements.

R (ML/s) nQD (cm−2) �l� (nm) �/�l� deff (ML) 	Ge
min (%) c 
xx

0.02 �1�5±0�2�×1011 14.1 0.21 5�4±0�5 6.5 0�75±0�03 −�0�029±0�002�
0.2 �3�2±0�3�×1011 10.1 0.27 6�1±0�5 4.0 0�83±0�02 −�0�030±0�002�
2 �3�6±0�3�×1011 9.8 0.19 7�1±0�5 <3 0�88±0�02 −�0�035±0�002�

where n is the number of islands evaluated, and �l� is
the mean size. The parameters of Ge QDs distribution
obtained from the analysis of STM images are listed in
Table I. The average island size decreases with increasing
growth rate while the normalized width of size distribu-
tion �/�l� shows nonmonotonic behavior. Simultaneously,
the island density increases with R due to increasing the
surface concentration of migrating Ge atoms and, thus, the
number of island nuclei.
From the STM images, we observe that Ge nanoclusters

grown at low deposition rate have a shape of hut clusters
bounded by {105} facets with rectangular or square bases
in two orthogonal orientations, corresponding to �100�
directions in the substrates. At highest R the formation of
elongated islands is suppressed and square-based pyramids
dominate, giving rise to a more narrow size distribution. In
this case the faster Ge deposition promotes nucleation of
additional square-based islands, in preference to diffusion
of absorbed Ge atoms to existing islands with subsequent
elongating them.
The samples were also characterized by Raman spec-

troscopy to estimate Ge–Si intermixing effect in Ge QDs
and elastic strain in them. We used quasi-backscattering
geometry, the incident radiation was polarized along �100�
crystallographic direction, and the scattered light was
detected in �010� polarization. The chosen configuration is
allowed for the scattering by longitudinal optical phonons
in Ge and Si and forbidden for the two-phonon scatter-
ing by transverse acoustical phonons in the Si substrate.
Raman spectra of samples with Ge layers grown at dif-
ferent R are shown in Figure 7. A peak observed at
∼300 cm−1 is originated from the optical vibration of Ge–
Ge bonds in Ge islands. Another feature at ∼420 cm−1

corresponds to the local Ge–Si vibrations. Based on
Raman measurements the Ge–Si intermixing effect can be
found from the ratio of the integrated intensities of the
Ge–Ge and Ge–Si peaks57

IGe–Ge
IGe–Si

= � �deff − c�
2�1+ �c−1−1��deff − c�

(2)

where c is the Ge content in Si1−cGec nanoclusters, deff
is the Ge coverage in monolayers, and � is a constant
which depends on the experimental conditions. For our
experimental setup � = 2. The values of c obtained from
the Raman spectra and Eq. (2) are listed in Table I.
Analysis shows that the average Ge content in the dots

increases with increasing deposition rate. Similar behavior
has been previously reported for dome-shaped Ge islands
fabricated at 620–650 �C.55�58 Since the amount of Ge
deposited as well as the growth and overgrowth tempera-
tures are the same for all three samples this finding pro-
vides an evidence for that intermixing in self-organized
GeSi QDs proceeds by a surface diffusion process44�58�60

rather than a bulk interdiffusion mediated by nonuniform
stress fields.61–63

The average lateral strain 
xx (= 
yy) in Ge nano-
clusters can be estimated from the Ge–Ge phonon fre-
quency �Ge–Ge using the following empirical relation64

�Ge–Ge = 300�3−32�1− c�+12�1− c�2− �450−30c�
xx
(3)

Here we disregard the size-confinement effect of optical
phonons which has to be important for QD’s of smaller
sizes.65 This leads to some underestimation of 
xx. The
data are presented in Table I. The negative strain values
indicate a compressive lateral strain within Ge islands. In
the sample with largest R the Ge dots are the most strained
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Fig. 7. Raman spectra of the samples with the layers of Ge QDs grown
at various Ge deposition rates R.

J. Nanoelectron. Optoelectron. 1, 119–175, 2006 127



R
E
V
IE
W

Germanium Self-Assembled Quantum Dots in Silicon for Nano- and Optoelectronics Yakimov et al.

with 
xx being close to the maximum biaxial compressive
strain for pure Ge islands in Si(001) (≈0.04), whereas
when the Ge was deposited at a smaller rate the strain is
relaxed due to the Ge–Si intermixing. Moreover, one could
expect that the strain would increase with increasing depo-
sition rate on the basis of island–island elastic interactions,
i.e., at higher deposition rates, the island density increases
so that the islands interact more strongly and relax less
effectively via the inhomogeneous strains allowed for iso-
lated islands.
Rutherford backscattering spectroscopy (RBS) was used

to estimate the amount of Ge deposited and to character-
ize qualitatively degree of strain relaxation in Ge layer.
RBS experiments were performed at the Research Cen-
ter Rossendorf using 4He+ beams with a beam energy of
1.2 MeV. Usually, the channeling minimum yield, 	min,
which is a ratio of the backscattering yield when the
impinging beam is aligned to a crystallographic axis to
that for a random beam incidence, is considered as a mea-
sure of the crystalline quality of the films. For a perfect
crystal of Si(001), 	min is about 3%. Figure 8 shows the
RBS/channeling spectra of samples fabricated at different
Ge growth rates R. The thickness of the Si capping layer
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Fig. 8. Random (red lines) and aligned (blue lines) backscattering
spectra of Si/Ge/Si(001) heterostructures with Ge nanoclusters deposited
at (a) R= 0�02 ML/s, (b) R= 0�2 ML/s, and (c) R= 2 ML/s.

is 300 nm when R = 0�2 ML/s and 2 ML/s, and 50 nm
for the sample with R = 0�02 ML/s. In all samples, the
Ge coverage is determined to be about 6 ML (see Table I)
in a good agreement with the measurements of Ge flux
in situ by a quartz thickness monitor. The minimum yield
from Si matrix taken immediately under the surface peak
is about 2.6% independent of the growth conditions and
corresponds to a high quality Si structure. An important
feature is the reduction of 	min of the buried Ge layer
with increasing Ge deposition rate. At R = 2 ML/s, 	Ge

min

approaches that of the best Si crystals, implying that in this
case Ge atoms occupy positions of Si atoms and, hence,
the Ge layer is nearly fully strained, as also observed in
Raman measurements.

3. THEORETICAL CONSIDERATION OF
STRAINS AND ELECTRONIC STRUCTURE

3.1. Spatial Distribution of Elastic Strain in
a Single Ge Quantum Dot

The physical properties of the SAQD heterostructures
depend on a variety of parameters of the QDs (size, shape,
lattice mismatch), therefore, the modeling of such objects
became a powerful method for understanding the real
experimental results and for predicting new ones. Nonuni-
form elastic strains in heterostructures can cause signifi-
cant changes in the electrical and optical properties as a
result of the energy-spectrum modification by about 0.1 eV
(Refs. [66, 67]). Furthermore, nonuniform strains favor the
spatial ordering of nanoclusters during the formation of
multilayer structures.68 Therefore, determining the fields
of elastic strains is a necessary step in both calculating
the band structure of self-arranged QDs and modeling the
epitaxy on strained surfaces.
The typical values of strain components are order of

relative lattice mismatch of two materials. For Si/Ge
heterostructure the relative lattice mismatch is equal to
AGe−ASi/ASi = 4�2×10−2, where AGe and ASi are lattice
constants.
Nonuniform elastic strains in heterostructures can cause

significant changes in the electron energy spectrum due to
the following reason:
(1) unit cell volume modification leads to a shift of energy
extremes of Brillouin zone;
(2) unit cell shape modification leads to degeneracy
release due to lowering symmetry; and
(3) built-in electric due to deformation (piezoelectric
effect).

There is no piezoelectric effect in Ge and Si, so the last
term may be omitted.
The strain distribution was found in terms of atomic

positions, using valence-force-field (VFF) model with a
Keating interatomic potential,69�70 previously adopted for
self-assembled QDs with different shapes.71–75 In com-
parison with the finite-difference76 and finite-element
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methods,68�77–79 which are also often used for the strain
calculations of QDs, the advantage of the VFF model is
that the strain energies and the positions of all the atoms
in a supercell can be obtained. The elastic energy W is
given by

W = 3
16

∑
i

∑
j

�ij

d2
ij

[
�ri− rj �

2−d2
ij

]2
+ 3

8

∑
i

∑
j>k

�ijk

dijdik

[
�ri− rj ��ri− rk�+

dijdik

3

]2

(4)

where the indices i, j , and k enumerate the atoms, the
index i runs over all atoms, j in the first sum runs over the
nearest neighbors of the ith atom, and the pair of indices
�j� k� in the second sum runs over all pairs of nearest
neighbors of the ith atom; r is the atomic position, dij is
the unstrained bond length, and �ij and �ijk are the force
constants in the Keating model.
The problem of finding a set of atomic positions that

minimizes W was solved using an original method relying
on Green’s tensor of the elastic problem.74 The sizes of
the QDs studied are so small that the continuum approx-
imation is inapplicable to the description of the elastic
properties of the system. To reduce the calculation error
introduced by the finite crystal volume, we sought the
deformational field as a convolution of some auxiliary
function with the Green’s function (Green’s tensor) of the
elastic atomistic problem.74 Conventional strain calcula-
tion techniques suppose periodic boundary conditions, and
a large calculation domain (or “supercell”) is needed to
reduce the unphysical elastic dot–dot interaction.73 In con-
trast to this, the Green function technique is not sensitive
to the size of calculation domain, and this allows us to
shrink the calculation domain so that only the atoms of
the island and its immediate surroundings are involved in
the strain calculation. This method yields the distribution
of strain at the atomic level for a system containing inclu-
sions of one material in the matrix of another. The crys-
tal anisotropy and the different elastic properties of the
medium with inclusions of another phase are taken into
account.
Typical pyramidal Ge/Si islands with four {105}-

oriented facets and a (001) base, lying on a wetting layer
of 0.7 nm thickness, have been under study. The island
size (the length of the base side) has been varied from 6
to 15 nm. Ge islands and wetting layer are embedded into
the Si matrix (Fig. 9). Figure 10 shows the distribution of
the elastic energy per atom in two sections for quantum
dots with the base edge length equal to 28 lattice constants
(about 15 nm). It is evident that inside the Ge nanocluster
the largest stress arises on the periphery of the pyramid
base, and the greatest relaxation occurs in the apex of the
pyramid. In Si matrix, which surrounds the Ge island, the
region near the apex of the pyramid is most stressed.
To show the structure of the deformation field of a quan-

tum dot and its environment, the deformation tensor profile

x [110]

y [110]

z [001]

Ge wetting layer,
0.7 nm

Ge island
(quantum dot)

Si

15 nm 

1.5 nm

15 nm

Fig. 9. Geometry of a typical Ge/Si(100) quantum dot used for
modeling.

along the pyramid for a 15 nm base size is shown in
Figure 11. Inside the pyramid the components of deforma-
tion tensor �xx and �yy < 0, but �zz > 0. This means that
inside a Ge nanocluster compression occurred in the lat-
eral direction (xy plane). The strain is tensile in the growth
z direction.

320
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Fig. 10. Space distribution of elastic energy in a Ge/Si quantum dot
with the base side of a 28 lattice constants (15 nm): (a) in the (100)
plane passing through the pyramid axis; (b) in the (001) plane passing
through the center of wetting layer. The numbers indicate the energies in
units of 10−4 eV per atom; the arrows show the direction of the increas-
ing energy. The spacing of the isolines is 5× 10−4 eV inside pyramid
and 10−4 eV outside the pyramid. Isolines are not shown for the Si–Ge
interface.
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Fig. 11. Depth profiles of the components of the deformation tensor
along the symmetry axis of a quantum dot. The step along z is equal to
the lattice constant. The label “1” denotes the region occupied by a Ge
wetting layer, and the label “2” the position of the pyramid apex.

The analysis of the size dependence of the strain shows
the following results:
(a) values of strain components are independent of the dot
size over the range of size 10–15 nm in the central region
of the dot; this means that the macroscopic value of the
strain tensor is already reached in this range;
(b) components of the strain tensor increase in absolute
value logarithmically with QD size near the edge of the
pyramid base.

This is in agreement with the macroscopic behaviour.
Recently, results obtained in calculating the strain in

the Ge/Si QD system with the use of two empirical
potentials—Keating and Stillinger-Weber—have been
compared.75 Both methods yield similar results for the
lateral tensor components, with a quantitative difference
found for the normal tensor components. As a result, the
authors75 recommended that the Stillinger-Weber potential
should be used for Ge nanoclusters with a pyramid base
smaller than 10 nm.

3.2. Hole Energy Spectrum

In contrast to quantum-well and quantum-wire heterostruc-
tures (two-dimensional and one-dimensional systems), the
properties of electrons and holes in QD heterostructures
cannot be described as a gas of quasiparticles. This case is
a fruitful concept of localized states. The electron or hole
localization radius in a nanocluster is comparable with the
cluster size and frequently it exceeds the Bohr radius of
single-impurity atoms with shallow levels in homogeneous
bulk semiconductors. However, the energy level in a QD
may be deep, and this is one more feature of QDs as deep-
level impurity centers. The study of QD heterostructures
now constitutes a separate branch of condensed-matter
physics.
There are many papers devoted to electronic struc-

ture calculation in self-assembled QDs, using the effective

mass approximation,72�76�80–82 pseudopotentials,73 and the
tight-binding (TB) approach.83 These studies concentrate
mainly on the InAs/GaAs heterosystem. Regarding Ge
QDs, calculations of energy spectrum have been performed
for free-standing spherical Ge nanoclusters84 and for real
pyramidal-type nanoclusters embedded into Si matrix.85

The energy spectrum was obtained by means of the
sp3 TB approach, including interactions between nearest
neighbours only.86�87 Following the work of Chadi,88 spin–
orbit interactions were added to the Hamiltonian. Strain
effects are incorporated into the Hamiltonian in two ways:
(1) as changes of interatomic matrix elements and
(2) as the strain-induced mixing of orbitals centered on
the same atom.

The changes of interatomic matrix elements due to strain
are treated by the generalization of Harrison’s d−2 law:89

ijk�d0�

(
d0
d

)nijk
for bond length d and by the Slater and Koster formula87

for bond angles. There ijk are the two-centre integrals,
d0 is the unstrained bond length and nijk are the orbital-
dependent exponents reflecting the localization of the
atomic wavefunctions near the nuclei. For description of
the strain influence on mixing of p orbitals we include
in the TB Hamiltonian the matrix elements between p
orbitals belonging to the same atom:

�px �	H 	py� = −��xy� �px �	H 	pz� = −��xx
�py �	H 	pz� = −��yz

where � is the strain tensor and � is the model parame-
ter. The mixing of orbitals introduced by above equations
allows us to fit the value of shear deformation potential d.
Another deformation potential, b, can be varied in a sim-
ilar way by taking into account the influence of diagonal
strain components on energies of orbitals.89

Values of parameters were chosen to fit values of heavy-
hole and light-hole effective masses and VB deformation
potentials.85 All parameters for Si–Ge bonds are taken as
arithmetic means between Si and Ge parameters. Find-
ing eigenvalues of the Hamiltonian is performed by a
free-relaxation method analogous to that of Pedersen and
Chang.90 These authors solved the equation:

�

��

∣∣����� = − �H ∣∣�����
where � is imaginary time parameter: � = it. When � →
�, the solution 	����� will relax towards the lowest-
energy state. When fixed the reference energy value Eref

in the bandgap the equation is solved by:85

�

��
	����� = −� �H −Eref�

2	�����
In the limit � → �, this equation gives an eigenstate
of �H corresponding to an energy level nearest to Eref .
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Fig. 12. Energy spectrum of holes in the pyramidal Ge/Si QD as a func-
tion of pyramid base size with aspect ratio being constant. The energy
is counted with respect to the VB edge in bulk Si. The ground state is
upper curve.

Then the value of energy E can be found as
E = �����	 �H 	�����/�����	�����	�→�.

The geometry and symmetry of problem in itself pro-
vides some conclusions about energy spectrum. The geom-
etry of the island results in a strong difference between
the values of size quantization energy in the plane of the
pyramidal base and in the growth direction. The difference
between ground state and some number of excited states
therefore has to be determined only by quantization in the
base plane. The degeneracy of energy levels is defined by
twofold representations of the symmetry group C2v; there-
fore all the levels are twofold degenerate. The symmetry
of the problem is similar to a disc symmetry that allows
us to make the assumption that the ground state will be
s-like and the next two states will be p-like.

Calculated energies of the ground state and the next
nine excited states of the hole spectrum are presented
in Figure 12 as a function of Ge pyramid base size.
Energy gap between levels was found to remain practi-
cally unchangeable for all sizes in the region 8–15 nm.
Figure 13 demonstrates the dependence of the ground-state
hole energy level on the Ge content in QDs. The found
wave functions are characterized by absence of nodal sur-
faces perpendicular to the growth direction. From the wave
function space configuration one may conclude that the
ground state has an s-like wave function, and the first two
excited states have p-like wave functions oriented along
[110] and [1̄10]. The next excited states have more com-
plicated configuration. The splitting between two p-like
states is about 7 meV, and it is caused by two factors:
the spin–orbit interaction and the nonequivalence of direc-
tions [110] and [1̄10] in the case of an atomically sharp
Ge/Si(100) interface. To find the contributions of Ge–Si
interface mixing to the splitting of the p-levels, the prob-
lem was solved with a diffused interface on the base of
the pyramid in which the last monolayer of Si under the
Ge island contains 33% of Ge, and the first Ge monolayer
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Fig. 13. Single-particle energy level of a hole in the ground state in the
pyramidal GecSi1−c/Si QD as a function of pyramid base length (l) and
Ge content (c) with aspect ratio being constant. The energy is counted
with respect to the valence band edge in bulk Si.

in the base of the island contains 33% of Si. In the case of
a diffused Ge/Si interface, p-like states have no preferred
orientation, and splitting between them decreases until
∼3 meV. This remaining splitting arises from the spin–
orbit interaction.
The absence in wavefunction density of nodal surfaces

perpendicular to the growth direction is clear evidence
that the difference between all the found states is deter-
mined only by quantization in the plane of pyramid base.
Therefore optical transitions between these states must
be stimulated by irradiation polarized in the base plane,
which agrees with experimental results.37�91 The weak size
dependence of separations between levels allow to con-
clude that optical transition lines in the QD array will be
well resolved even if there is a dispersion of QD sizes
within the investigated range of size.

3.3. Wave Functions and g-Factor of Holes

The functionality of modern semiconductor devices relies
on the control of electronic charge. However, not only do
carriers will carry charge, but they also carry spin. Spin
transport has one major advantage compared with charge
transport: quantum coherence can be maintained on much
larger time scales. Several device applications, such as spin
transistors, spin memory, and also the spin quantum com-
puter have been proposed to use spin-dependent effects
in semiconductors. Semiconductor quantum dots, in which
carriers occupy discrete energy states, show various spin-
related phenomena, including spin degeneracy, exchange
interaction, spin blockade, and Kondo physics (for review,
see Refs. [92–96]). Various promising schemes exploit-
ing the spin of carriers in QD have been proposed
recently.6�97�98

For successive manipulation of spin in QD it is neces-
sary to know such fundamental spin properties as the effec-
tive g-factor, which defines the Zeeman splitting, and the
spin relaxation time. On the one hand, these magnitudes
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characterize the material properties of the physical object;
on the other hand they characterize the individual elec-
tron state. The effective g-factor is directly connected with
structure of the wave function of the localized carrier in
QD. Here this connection will be demonstrated by consid-
ering the hole-localized state in the self-assembled Si/Ge
quantum dot. From fundamental point of view, this system
attracts much interest because, in both, effects of strong
quantum confinement and strains define the energy spec-
trum, and they are responsible for the modification of the
g-factor.
In bulk semiconductors, the motion of electrons and

holes in the presence of the spin–orbit interaction gives
rise to the g-factor, which is significantly modified com-
pared to the free-particle g-factor �g≈ 2�. As one advances
from bulk semiconductors to low-dimensional structures,
quantum confinement effects come into play that leads
to further strong modification of the g-factor. For elec-
trons, this results in the enhancement99 and high anisotropy
of the Zeeman splitting.100 A comprehensive theory based
on the kp method was developed to predict a behavior of
the electron g-factor in low-dimensional systems, includ-
ing quantum wells,101 wires and dots.102 Some theoretical
results were published for the hole g-factor in quantum
wells.103–105 Calculation of the hole g-factor in quantum
dots was made in Refs. [85, 106].
Let us start with qualitative analysis of the principal

distinctions between the 2D case of quantum wells and
zero-dimensional (0D) case of quantum dots, which are
responsible for the g-factor renormalization. A very wide
quantum well can be considered as a bulk semiconductor.
When the interaction with a magnetic field is small in
comparison to the quantization energies (or strain-induced
splittings in the case of strained semiconductors), the
explicit form of the 8× 8 kp Hamiltonian allows one to
obtain immediately the g-factor components for the hole
subbands: for a heavy hole, g� = 6k, g⊥ = 0 and for a
light hole, g� = 2k, g⊥ = 4k, where g�, g⊥ are the com-
ponents of the effective g-factor tensor for magnetic field
parallel and perpendicular to the growth axis z of quan-
tum well, respectively; k is the Luttinger parameter (here
the small valence-band parameter q is neglected). For nar-
rower quantum wells, the uncertainty in component of
quasi-impulse kz increases, which leads to the modification
of the light-hole g-factor owing to mixing with the split-
off VB states and with the conduction band states.107 The
Lande factor of the heavy hole remains unchanged because
the heavy-hole states do not mix with the nearest subband
states. In the case of ultranarrow quantum wells, the hole
g-factor is defined by the parameters of the barrier layer.
In the case of quantum dots, a new modification of the

hole g-factor occurs owing to the spatial confinement not
only in the growth direction z but also in lateral directions
x� y. This leads to the uncertainty in kx, ky and, as result,
to the strong mixing between the light- and heavy-hole

states.107 The light- and heavy-hole mixing is left out of
account in the theoretical consideration of the 2D system
because the states at the bottom of the subband �kx� ky = 0�
are considered usually. In the self-assembled quantum dots
formed on the base of strained heterostructures, the signif-
icant change of the hole g-factor is caused by the inho-
mogeneity of strains in QD. If one compares the quantum
well and the quantum dot, both with growth direction,100

then one finds in the dot nonzero strains �xy, �xz, �yz,
which lead to the mixing between the light- and heavy-
hole states. In quantum wells these strains are absent. So,
in the case of quantum dots, the spatial confinement in all
three dimensions and the strain inhomogeneity induce the
mixing between electronic bands and, as result, lead to a
new modification of the hole g-factor.

Here we describe a method developed in Ref. [106] for
calculation of the hole g-factor in quantum dots, using
the TB approach. This method allows us to calculate the
g-factor in quantum dots with different shapes and differ-
ent confinement potential. It is applicable down to the size
of wave function comparable with interatomic distance.
This method can be applied also to the electron states in
quantum dots.
The application of magnetic field H produces the

Zeeman interaction energy of the particle, which has effec-
tive magnetic moment M, which can be written as: �H =
−M̂ ·H. The magnetic moment is connected with the angu-
lar momentum J in following way: M= g0�BJ, where �B

is the Bohr magneton, g0 is the Lande factor, which is
equal to 2 for the particle with only spin magnetism and
equal to 1 for the particle with only orbital magnetism. Let
us introduce the magnetic moment of a hole MQD, which
is measured in unit of the Bohr magneton.

MQD = L+2S

where L is the orbital angular momentum, and S is the
spin of the particle. If one needs to calculate g-factor of
confined electron in QD, one can use the same expres-
sion for magnetic moment where in the sign differs. The
Zeeman Hamiltonian for localized carrier in the quantum
dot is written as:

�HQD�H�=−�BHM̂QD =−�B��L+2�S�H
Even in quantum dots grown along high-symmetry direc-
tion [001] the symmetry is not higher than C2v because of
the nonequivalence of directions [110] and [1̄10]. Hence
the energy levels are twofold degenerate in the absence of
a magnetic field, and their sublevels constitute the Kramers
doublets. For the pair of Kramers-conjugate states the
Zeeman contribution to the effective Hamiltonian is writ-
ten as:

1
2
�B�̂igijHj

where �̂i�i = x� y� z� are the Pauli matrices, and for
low-symmetry systems the real tensor gij is character-
ized by nine linearly independent components.108 For a
hole (or an electron) in the quantum dot with symmetry
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not lower C2v one can choose the system of coordinates
�x� y� z�, where gij is characterized by three principal val-
ues gxx, gyy, gzz.

When the Zeeman interaction is small in comparison to
the confinement energy, the g-factor depends only on the
magnetic field direction and can be evaluated by means of
the first-order perturbation theory:

	g	 = 2
√
��	nM̂QD	��2+	��	nM̂QD	�∗�	2 (5)

where ���∗ are the Kramers-conjugate states, n is the unit
vector in the magnetic field direction. Thus, to calculate
matrix elements of the operator M̂QD, one has to determine
the wave functions ���∗ for the hole (or electron) state
in the quantum dot. It is assumed, that the magnetic field
does not change significantly the wave function of hole in
QD, and for calculation of matrix elements, the eigenstates
of the non-perturbed Hamiltonian have been used. The
eigenvalue problem for the hole states in QD was solved
in Ref. [85] with sp3 tight-binding (TB) approach, includ-
ing interactions between nearest neighbours only.86�87 The
set of atomic orbital �s�px�py�pz� for each atom was
taken, and state vector length was equal to (number of
atoms)× (number of orbitals per atom). Following Chadi88

the spin–orbit interaction was added to the Hamiltonian.
Strain effects were incorporated into Hamiltonian in two
ways: as changes of interatomic matrix elements87�89 and
as the strain-induced mixing of orbitals centered on the one
atom.85 The wave function was found with free-relaxation
technique. The component of calculated state vector ��N
represents the amplitude of the probability to find hole (or
electron) on the �-orbital of the atom number N , where
the index � runs over the set �s�px�py�pz�.

Because the state vectors were found as linear combina-
tions of atomic orbitals, one should determine the expres-
sion for M̂QD in the representation of atomic orbitals. The
angular momentum of electron on the �-orbital of the atom
number N can be written as

�Li =
1
�
eijkp̂j r̂k

where eijk is the unit antisymmetric tensor; indices i� j� k
run over the set �x� y� z�. The momentum operator p̂=m ˆ̇r
can be expressed via the coordinate operator r̂ as

p̂= im

�

( �H0r̂− r̂ �H0

)
where m is the mass of the free electron, �H0 is the
Hamiltonian without spin–orbit interaction. This equation
can be deduced from the time differentiation rules for
operators.109 Then the angular momentum operator can be
written as

�Li =
im

�2
eijkr̂j �H0r̂k

Hence the magnetic momentum of hole on the �-orbital
can be written as

�M̂QD�i = �Li+2�Si

But one cannot use this equation directly for calculating
the matrix elements ��	M̂QD	��, ��	M̂QD	�∗� because the
state vectors �, �∗ are calculated in the TB approach and
the coordinate operator r̂ has no physical sense in this
approach. It is replaced by coordinate operator �R of the
atom with considered orbital

�Li =
im

�2
eijk �Rj �H0

�Rk (6)

Replacing r̂→ �R leads to losing some part of the angular
momentum. The remaining part (Eq. (6)) is connected with
the envelope function. It is the orbital momentum caused
by localization of the carrier in the quantum dot. To obtain
the total magnetic momentum MQD one should take into
account the internal orbital momentum corresponding to
the atomic orbital. Also one should remember about renor-
malization of g0 = 2 caused by the interaction of electronic
bands.
The hole state in the quantum dot is built mainly from

states of the valence band (VB), namely heavy hole band
(HH), and the light hole band (LH). But the nearest elec-
tronic bands also make contribution to the state in quantum
dot. The split-off valence band (SO) and the conduction
band (CB) are important for the correct magnetic momen-
tum calculation for hole (or electron) state in QD. The TB
approach, which used for solving the eigenvalue problem,
not only takes into account the interaction of the electronic
bands near band gap but also includes the interaction of
the HH states with the higher conduction bands. The con-
tribution of the remote bands in the hole state in QD are
negligible. The wave function of hole (or electron) can be
presented in the form:

	�� = ACB�R�	CB�+AHH�R�	HH�
+ALH�R�	LH�+ASO�R�	SO�

where 	CB�� � � � � 	SO� are the Bloch functions, and coef-
ficients ACB� � � � �ASO can be considered as envelopes and
reflect the contributions of the corresponding bands in the
state in QD. Every component of the wave function has
intrinsic effective spin and interacts with the magnetic field
according to Eqs. (7)–(11) in the following paragraphs.
For the degenerate valence band states (�8 band), the

Zeeman interaction can be written in the form

�H�H�= 2�B�k��JH�+q��J 3
x Hx+ �J 3

y Hy+ �J 3
z Hz�� (7)

where J is the hole effective angular momentum �J = 3
2 �,

and k and q are Luttinger parameters. This equation auto-
matically takes into account the internal orbital momentum
corresponded to the atomic orbital.
The strains and confinement effects in the quantum dot

lead to the lifting of the valence band degeneracy.
It is convenient for states in the HH band to use

an effective HH spin or pseudospin Shh = 1
2 to describe

their sublevels: as in Ref. [104], we identify Jz =
− 3

2 with �Shh�z = − 1
2 , and Jz = 3

2 with �Shh�z = + 1
2 .
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In terms of the pseudospin Shh, the Zeeman Hamiltonian is
written as

�H�H�= �Bghh��ShhH� (8)

The same one can make for states in the LH band: Jz =
− 1

2 is identified with �Slh�z = − 1
2 , and Jz = + 1

2 is identi-
fied with �Slh�z = + 1

2 . The Zeeman interaction in the LH
band is

�H�H�= �Bglh��SlhH� (9)

From comparison (7) and (8) one can conclude that for the
heavy hole state, which have J = 3

2 , Jz = ± 3
2 , the Lande

g-factor is ghh ∼ 6k (the term with small parameter q can
be neglected).
For the CB and SO states, the Zeeman interaction can

be written in terms of the effective spin: Sc, Sso. For states
in the conduction band,

�H�H�= �Bgc��ScH� (10)

for states in the split-off band,

�H�H�= �Bgso��SsoH� (11)

where gc is the g-factor of an electron in the conduction
band, gso is the g-factor of a hole in the split-off band,
and operators �Sc, �Sso can be expressed via the Pauli mat-
rices �̂x� �̂y� �̂z, �Si = 1

2 �̂i.
The total energy of the interaction with magnetic field,

including the interaction of the orbital momentum L is
written as the sum:

�H�H� = 2�B�k��JH�+q��J 3
x Hx+ �J 3

y Hy+ �J 3
z Hz��

+�Bgso��SsoH�+�Bgc��ScH�+�B
�LH (12)

where �L is given by (6). From this equation one can extract
the magnetic moment MQD:

�M̂QD�i = 2k�Ji+2q �J 3
i +gso��Sso�i+gc��Sc�i+�Li (13)

Substituting Eq. (6) into Eq. (13) we finally arrive at the
following main equation:

�M̂QD�i = 2k�Ji+2q �J 3
i +gso��Sso�i+gc��Sc�i

+ im

�2
eijk �Rj �H0

�Rk (14)

Now the g-factor of a hole (or an electron) can be calcu-
lated in the quantum dot utilizing Eqs. (5) and (14).
The localized states in the Ge quantum dot are formed

mainly from valence band states and represent the super-
positions of states 	 32 �± 3

2�� 	 32 �± 1
2�� 	 12 �± 1

2� (the states
	J � Jz� are the eigenstates of effective angular momentum
J and its projection Jz). The states 	 32 �± 3

2� can be con-
sidered as heavy hole states, 	 32 �± 1

2� can be considered
as light hole states, 	 12 �± 1

2� can be considered as split-
off hole states. The strain distribution in quantum dot in
general consists of the compression in the plane of the

pyramid base and the extension in the growth direction
z. In the bulk, uniaxially extended semiconductor strains
lift the degeneracy of the valence band, making the heavy
hole band the highest valence band.110 For this reason the
contribution of the heavy hole states in the ground state
in QD must be predominant. The same conclusion follows
from estimation of the quantization energies for heavy and
light hole. Heavy hole has the much bigger effective mass
and the lower quantization energy (compared to those for
light hole).
Let us consider the external magnetic field applied par-

allel to the growth direction, H � z. The interaction energy
is determined by the projection of the magnetic momen-
tum on the external field direction (i.e., on the z-direction).
Therefore for calculation of the hole g-factor, one needs
to evaluate the matrix elements of operators �Jz, �J 3z , ��Sso�z,
��Sc�z, �Lz. One can estimate the hole g-factor based only
on the results of the wave function expansion in the basis
	J � Jz�, that is, the expansion 	�� = �nAn�R�	n�, where
n runs over the set �	 32 �± 3

2�� 	 32 �± 1
2�� 	 12 �± 1

2�� (the heavy
hole states, the light hole states and the split-off hole
states). The contribution of CB states is omitted because
of its small value (∼0.5%) according to our calculations.
The results of the wave function expansion for the ground
hole state in the quantum dot with size l = 15 nm and
h= 1�5 nm are presented in Table II.
The contribution of the states with Jz = ± 3

2 (the heavy
hole states) is about ∼84% of the ground state. The rest
belongs to the states with Jz =± 1

2 (the light and split-off
hole states). From the Table II one can see that the state 	↑�
is formed in general by the states with Jz = + 3

2 and Jz =
− 1

2 and the state 	↓� consists of the states with Jz = − 3
2

and Jz =+ 1
2 . The angular momentum projection of heavy

hole part is antiparallel to that of the light and split-off hole
part. This can be explained by symmetry considerations.
The combination of the states with Jz = + 3

2 and Jz = − 1
2

remains the same under symmetry transformation of group
C2v (�-rotation). The part with Jz = ± 1

2 reflects the con-
tributions of the states 	 32 �± 1

2�, 	 12 �± 1
2�, either of the two

is about ∼8% of the ground hole state. That is the LH and
SO states make the equal contributions to the ground hole
state.
If the ground hole state in the quantum dot was formed

by the heavy hole states only, the spin-up state 	↑� would
correspond to Jz = + 3

2 , and the spin down state 	↓�
would correspond to Jz =− 3

2 . The Zeeman splitting in the

Table II. Results of wave function expansion in the basis 	J � Jz� for
two Zeeman sublevels 	↑�, 	↓� of the ground hole state in Ge quan-
tum dot. The sizes of Ge nanocluster: the height h= 1�5 nm, the length
of the base side l = 15 nm. The contribution of CB states (∼0.5%) is
omitted.

	J � Jz� 	 3
2
� 3

2
�% 	 3

2
� 1

2
�% 	 3

2
�− 1

2
�% 	 3

2
�− 3

2
�% 	 1

2
� 1

2
�% 	 1

2
�− 1

2
�%

	↑� 83�67 2�26 4�7 0�08 1.17 8.11
	↓� 0�08 4�7 2�26 83�67 8.12 0.67
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magnetic field H � z would be defined as

E�Hz� = 2�B��MQD�z�Hz
= 2�BHz

(
2k · 3

2
+2q · 27

8
+�Lz�

)
(15)

where ��MQD�z�, �Lz� are average z-components of the
magnetic and orbital momentum in the state 	↑�. For esti-
mation, the term with small parameter q is neglected in the
Eq. (15), 	q	 = 0�06 (Ref. [111]). If one takes into account
the admixture of the light and split-off hole states with
Jz =± 1

2 , the Eq. (15) turns into following:

E�Hz� = 2�BHz2k�a
2−d2� · 3

2

+2�BHz�2k�b
2− c2�+gso�e2− f 2�� · 1

2
+2�BHz�Lz�

where coefficients a2, b2, c2, d2 are probabilities of finding
in the state 	↑� hole with J = 3

2 and Jz = 3
2 , Jz = 1

2 , Jz =− 1
2 , Jz = − 3

2 correspondingly. The coefficients e2, f 2 are
probabilities of finding hole with J = 1

2 and Jz = 1
2 , Jz =− 1

2 correspondingly. They all are connected with coeffi-
cients Ai�R�, i ∈ �HH ↑�HH ↓�LH ↑, LH ↓, SO ↑, SO ↓�
in following way:

a2 =
∫
A2

HH↑�R�dR� b2 =
∫
A2

LH↑�R�dR

c2 =
∫
A2

LH↓�R�dR� d2 =
∫
A2

HH↓�R�dR

e2 =
∫
A2

SO↑�R�dR� e2 =
∫
A2

SO↓�R�dR

For quantum dots with size l = 15 nm and h = 1�5 nm,
these probabilities are: a2 ≈ 0�84, b2 ≈ 0�02, c2 ≈ 0�05,
d2 ≈ 0, e2 ≈ 0�01, f 2 ≈ 0�08.
If one excludes the term with �Lz�, the estimation of the

hole g-factor can be done by means following equation:

gzz ≈ 6k�a2−d2�+2k�b2− c2�+gso�e2− f 2� (16)

The valence-band parameters for bulk Ge and Si are
well known. The Luttinger parameter k is known from
high-precision experiments111 k = −3�41± 0�03, but the
magnitude of gso is known with poor accuracy, gso =−10±
3 (Ref. [112]). However, the g-factor is crucially depended
on the magnitude of k and weakly depended on the gso,
and this fact does not lead to the significant error in cal-
culations. More significant correction of g-factor can be
expected from the difference of parameter k in the strained
Ge from its value in unstrained Ge. Experimental values
for the Luttinger parameters of strained Ge do not exist in
the literature. Therefore, we have used a nonlinear interpo-
lation scheme113 along the concepts of Lawaetz,114 which
exactly reproduces the experimental values of the Lut-
tinger parameters of both Si and Ge. Parameter k is mainly

depended from k ·p couplings of the topmost valence band
with the s and p antibonding conduction-band states with
energy gap E0 and E ′

0, respectively. This allows k to be
expressed in the following form:

k = 1
6

Ep

E0

− 1
6

E ′
p

E ′
0

+ k̄ (17)

where

Ep =
2
m
	�X	Px	� ′

2�	2

E ′
p =

2
m
	�X	Py	� ′

15�	2

are the principal interband momentum matrix elements,
	X� is the yz-type wave function of the � ′

25 valence-band
states in the case where spin–orbit coupling is neglected,
and k̄ is expressed by two constants (G and H2 in
Ref. [114]). The estimation of fundamental gap E0 in
strained Ge following Van de Walle110 gives E0 � 1�2 eV.
This value is close to E0 obtained for pseudomorphic Ge
film by theoretical study of strained Si1−cGec alloys, coher-
ently grown on a Si(001).115

The gap E ′
0 in strained Ge can be found follow Lawaetz

by scaling E ′
0 for initial Ge according to

E ′
0�s�= E ′

0�i�

[
a�s�

a�i�

]−1�92

where a�s�, a�i� are the lattice constants for strained and
unstrained Ge. The momentum matrix elements are
inversely proportional to the lattice constant. Hence Ep�s�
and E ′

p�s� are obtained by scaling their values for
unstrained Ge with

��s�= �1+1�23�D�s�−1�
[
a�i�

a�s�

]2

where D�s� the factor introduced by Van Vechten116 to
account for d electron effects. For unstrained Ge, D�i�=
1�25. To determinate the D�s� for strained Ge, we use the
method proposed by Van Vechten and obtain the value
D�s� = 1�13. Thus, using E ′

0(Ge) = 3.16 eV, Ep(Ge) =
26.3 eV, E ′

p(Si) = 14.4 eV,114 we have calculated from
Eq. (17) the Luttinger parameter k =−2�75.

Substituting k = −2�75, gso = −10 in Eq. (16), one
can find 	gzz	 ≈ 13 for Ge nanocluster with h = 1�5 nm
and l = 15 nm. The numerical calculation of the hole
g-factor by means Eq. (5) with eigenstates obtained in
TB approach gives the value 	gzz	 = 12�28. Analogously,
we have calculated the principal values of the g-tensor
for magnetic field lying in the plane of the pyramid base
	gxx	 = 0�69�H 		 �110�, 	gyy	 = 1�59�H 		 �1̄10�. The com-
parison of the obtained value gzz with the g-factor of heavy
hole in the bulk germanium 	ghh	 ≈ 6k= 20�46 shows that
the effects of quantum confinement and strains lead to
the decrease of the hole g-factor. This demonstrates the
suppression of the spin–orbit interaction due to the admix-
ture of the light and split-off holes states.

J. Nanoelectron. Optoelectron. 1, 119–175, 2006 135



R
E
V
IE
W

Germanium Self-Assembled Quantum Dots in Silicon for Nano- and Optoelectronics Yakimov et al.

10 15 20 25 30
0

2

4
10

12

14

16

gxx

gyy

gzz

H
ol

e
g-

fa
ct

or

Pyramide base size (nm)

Fig. 14. The g-factor of ground state in Ge quantum dot as a function
of the QD lateral size. The Ge nanocluster height is h= 1�5 nm.

To estimate the orbital momentum contribution we have
calculated the hole g-factor dropped all terms in Eq. (14)
except the last. In this case, the calculation gives the value
of the g-factor one order smaller than for case of total
moment MQD: 	gzz	 = 0�59. So, the hole g-factor is mainly
determined by the effective angular momentum J, but not
by the orbital momentum L.
The hole g-factor of the ground state in QD demon-

strates a well pronounced anisotropy: gzz is one order
larger than gxx and gyy. Calculation of the hole g-factor for
Ge nanocluster with larger lateral size l, keeping the nano-
cluster height h constant, shows the stronger anisotropy of
the g-factor (Fig. 14). For calculating this size dependence,
the parameter k = 2�75 for strained Ge was used. The
change of k with size of Ge nanocluster was not taken into
account. Simple estimation of k in dependence on strain
shows that this parameter slightly rises with nanocluster
size l. So, if this fact was considered, it would be led to
the stronger anisotropy enhancement with lateral size l.
The reason of the g-factor anisotropy lies in the simi-

larity between the ground hole state and the heavy hole
state 	 32 �± 3

2�, which has the transverse components of the
g-factor close to zero.104 The ground hole state becomes
closer to the heavy hole state with the increase of the nano-
cluster lateral size that leads to the anisotropy enhance-
ment. The numerical calculation confirms this assumption:
the contribution of the heavy hole state in the ground state
in QD goes up with increasing of the nanocluster size
l (Fig. 14). For example, when the size l changes from
15 nm to 30 nm at the height h = 1�5 nm, the contribu-
tion of the heavy hole state increases from 83.7% to 86%.
The g-factor anisotropy becomes stronger: 	gzz	 goes up to
13.53, and transverse components decrease to 	gxx	 = 0�52,
	gyy	 = 1�56.
The contribution of the states with Jz = ± 3

2 (the
	 32�-states) with nanocluster size l, was considered with
previous results of the spatial strain distribution in Ge
nanocluster and their environment.74 When the lateral
nanocluster size l increases with h= constant, the biaxial
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Fig. 15. Profiles of biaxial strain �zz− 1
2
��xx+�yy� along the symmetry

axis z of a quantum dot at different lateral sizes l of Ge nanocluster. The
region “1” corresponds to wetting layer and the point “2” corresponds to
the tip of the pyramid. The maximum value of biaxial strain is reached
in wetting layer (point “A”).

strain �zz − 1
2 ��xx + �yy� in the Ge nanocluster increases

with the ratio l/h (Fig. 15). This leads to higher strain
splitting between the light and heavy hole states.110 The
admixture of the states with Jz = ± 1

2 (the 	 12�-states)
is decreased. It is surprising that the dependencies of
these characteristics on the nanocluster size l are identical
(Fig. 16). This means that the 	 32�-state contribution is a
nearly linear function of biaxial strain. It is difficult to
explain this result in frame of simple qualitative model.
But it demonstrates that the strain is the main reason deter-
mining the change of the contribution ratio between the
	 32�-state and the 	 12�-state in considered case (h = const,
l is changed).
The calculation of the hole g-factor with increasing of

both sizes l and h, keeping the proportions of the pyramid
constant (h/l = 1

10 ), gives more higher anisotropy of the
g-factor. For example, for l= 30 nm, h= 3 nm the princi-
pal values of the g-tensor are the following: 	gzz	 = 17�43,
	gxx	 = 0�12, 	gyy	 = 1�06. In this case, the contribution
of the heavy hole state goes up to 90%, which leads to
this high anisotropy. The strong increase of gzz is caused
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Fig. 16. Maximum value of biaxial strain at point “A” in Figure 15 (red
symbols) and the 	 3

2
�-state contribution (blue symbols) as a function of

lateral pyramid size. The height of pyramid is fixed as h= 1�5 nm.
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by reducing the part of wave function penetrating in Si.
In this case, the wave function is located almost only in the
Ge region, and Si does not an affect on the g-factor value.
In the case of nanocluster with h= 1�5 nm, the influence of
Si environment is stronger. When proportions of the pyra-
mid (h/l= 1

10 ) are preserved, strains can not be considered
as the main reason determining the 	 32�-state contribution.
The spatial distribution of strains and their magnitude in
the quantum dot are not significantly changed increasing
nanocluster sizes. The strain splitting between the light
and heavy hole states remains the same. The confinement
energy determined the change of 	 32�-state contribution in
this case is.
The obtained size dependence of the g-factor proves

the correctness of our approach. Indeed, when the lateral
size l increases, the Ge nanocluster transforms into the
pseudomorphic-strained Ge film. The inhomogeneity of
the strain distribution disappears; the strains �xy, �xz, �yz
are absent. The uncertainty in kx, ky becomes equal to zero
for the state on the bottom of the subband. All this changes
suppress the mixing of the heavy hole state with the near-
est band states. And as result, the g-factor of the ground
hole state must trend toward the heavy hole g-factor in
strained Ge film, ghh ≈ 6k = 16�5. But for thin Ge layer
(thickness is a few nanometers), the g-factor of hole state
is affected by Si surrounding Ge because the tails of wave
function penetrate into Si. Namely, for Ge layer with thick-
ness h = 2�2 nm the z-component of g-tensor is equal
to 	gzz	 = 13�11. It is obvious that gzz does not reach the
value of heavy hole g-factor in stained germanium. More-
over, this value is smaller than 	gzz	 = 13�53 for Ge nano-
cluster with l = 30 nm, h= 1�5 nm. This effect is caused
by vanishing the contribution of orbital momentum L for
2D Ge layer. These given values of g-factor have been
obtained for Ge nanocluster with atomically sharp Ge/Si
interface. The Ge/Si mixing may be induced in the calcu-
lation procedure in the following way: each of atoms in the
crystal lattice is substituted with probability two-thirds for
one from its four neighbors. So, in this manner, one can
obtain the diffused interface with graded changes of the
Ge content within three monolayers. The calculation with
diffused Ge/Si interface gives the following results: trans-
verse components undergo a drastic change, for example,
for the Ge nanocluster with lateral size l = 15 nm, 	gxx	
decreases from 0.69 to 0.6, and 	gyy	 decreases from 1.59
to 0.33. But the longitudinal component of the g-factor
remains unchanged practically, 	gzz	 = 12�37. So, in the
case of diffused interface, the g-factor anisotropy enhances
in comparison to the case of the atomically sharp inter-
face. This is probably caused by the effective increase of
the Ge nanocluster size.
For magnetic field H � z, the Zeeman transition proba-

bility depends on the magnitude of the angular momentum
projection Jz. For the state with Jz = ± 3

2 the transitions
between Zeeman sublevels are forbidden. For allowed
transitions, the condition �Jz = ±1 must be satisfied.

The admixture of the states with Jz = ± 1
2 leads to the

weakening of this restriction. Therefore, the Zeeman tran-
sitions probability becomes higher for nanoclusters with
smaller lateral size l. For any chosen direction of the mag-
netic field, the Zeeman energy is determined by the pro-
jection Jh of the angular momentum on the direction h.
When the direction of h is not parallel with principal axis
of symmetry z, the states 	J � Jh� cannot be considered as
the heavy, light, and split-off hole states. For example, the
state 	 32 �± 1

2� with Jh = ± 1
2 cannot be considered as the

light-hole state. The state 	J � Jz� is transformed into 	J � Jh�
in following way:

	J � Jh� =
∑
Jz

RJJzJh�����	J � Jz�

where ��� are the azimuth and polar angles of the vector
h in the coordinate system �x� y� z�, and the matrix R can
be expressed via standard rotation matrix: RJJzJh����� =
DJ
JzJh
�0�−��−��.117

In the special case � = �/2, � = 0, the magnetic field
lies in the plane of the nanocluster base and coincides with
axis x. Let us consider the heavy hole state with Jz = 3

2 ,
without any admixture. In the representation 	J � Jz�, the
vector of this state can be written in the following form:

	�� = a

∣∣∣∣32 � 32
〉
+b

∣∣∣∣32 � 12
〉
+ c

∣∣∣∣32 �−1
2

〉
+d

∣∣∣∣32 �−3
2

〉

=


a

b

c

d

=


1

0

0

0


where squares of coefficients a2, b2, c2, d2 reflect con-
tributions of the states with corresponding Jz, a

2 + b2 +
c2+d2 = 1. Under application of RJJzJh��/2�0�, the heavy
hole state transforms into superposition of the states with
Jh =± 3

2 and Jh =± 1
2 :
1

0

0

0

→



√
1/8

√
3/8

√
3/8

√
1/8


From this equation it is clear, that the contribution of

the state with Jh = + 1
2 is 3

8 of whole state, the state
with Jh =− 1

2 makes the same part. They contain together
75%. So, for magnetic field H, lying in the plane of
pyramid base, the contribution of the states with Jh =
± 1

2 becomes higher in comparison with H � z. There-
fore, the probability of Zeeman transitions for in-plane
magnetic field is higher. This is also true for the hole
state with initial admixture of the states with Jz =± 1

2 , as
for the ground hole state in the considered Ge quantum
dot, where the contribution of the states with Jz =± 1

2
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is about 16%. The probability of induced transitions
between the Zeeman sublevels is determined by the
interaction of the magnetic momentum with oscillating
microwave magnetic field H⊥ cos2��t (H⊥ is perpendic-
ular to the external magnetic field H) and is proportional
to the square of the matrix element 	�↓	�̂⊥H⊥	↑�	,
where �⊥ is the magnetic momentum projection on the
direction of microwave field H⊥,118

P↑↓ ∼ 	�↓ 	�̂⊥H⊥	 ↑�	2

For external field H � z the microwave magnetic field
H⊥ lies in the plane of the nanocluster base and the pro-
jection of magnetic momentum �⊥ is proportional to the
principal values of g-tensor: gxx (the direction [110]) and
gyy (the direction [1̄10]). For microwave field H⊥, which
is parallel to the direction [110], the probability is pro-
portional to the square of the principal value gxx: P↑↓ ∼
g2xx. For external field H⊥z, the projection of magnetic
momentum �⊥ lies in the plane containing the axis z. For
microwave field H⊥, which is parallel to direction [100],
the probability is proportional to the square of the principal
value gzz: P↑↓ ∼ g2zz.
For quantum dot with gzz = 12�28, gxx = 0�69, gyy =

1�59, the estimation of induced transitions probability
gives the probability for H � z approximately two orders
smaller than for H⊥z:

P↑↓�H⊥z�
P↑↓�H � z� ≈ 100

Taking into account the decrease of transverse compo-
nents (gxx = 0�6, gyy = 0�33) caused by the Ge/Si mixing
at the interface, the ratio amounts to thousand:

P↑↓�H⊥z�
P↑↓�H � z� ≈ 103

The obtained results give the evidence that the driv-
ing force of g-factor size dependence is the change of
the contribution of the 	 32�-states to the hole state in QD.
The existing ratio between contributions of the 	 32�-state
and the 	 12�-state composing the hole state in QD, was
explained by simple model of the band structure with-
out interaction of the electronic bands.106 It was consid-
ered separately the energy spectrum of hole with Jz =± 3

2
and the energy spectrum of hole with Jz = ± 1

2 in QD
(Fig. 16). In frame of this model the deepest energy lev-
els in QD belong to hole with Jz = ± 3

2 . In the region of
the excited states one can find the levels of both 	 32�-states
and 	 12�-states. If the mixing between the 	 32�-states and
the 	 12�-states is included into consideration then the true
spectrum of a hole in QD can be obtained. In the region
of the excited states there are some “mixed” states with
comparable contributions of both holes. The ground state
mainly consists of the 	 32�-state. This qualitative model is
justified by results of numerical expansion of hole states
in QD on the 	 32�-states and 	 12�-states.
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Fig. 17. The 	 3
2
�-state contribution for the ground state and nine excited

states in Ge quantum dot as a function of the state energy. The energy is
counted from the valence band edge in bulk Si, the energy of the ground
state E0 = 420 meV.

Figure 17 presents the contributions of the 	 32�-states for
the ground and excited states of confined hole in the quan-
tum dot with sizes l = 15 nm, h = 1�5 nm. These results
show that the contributions of the 	 32�-states are smaller
for more excited states than for deeper states. For exam-
ple, for the first excited state, the 	 32�-state contribution
goes down until 79%, while for the ground state it is about
84%. For the ninth excited state, the 	 32�-state contribution
is about 60% of the wave function. The contribution of the
	 32�-state in the QD hole states is not described by smooth
function of the energy. For explanation of this stepwise
change, we construct the wave functions of 	 32�-states and	 12�-states separately.
The calculated wave functions of these states for the

first four levels in QD are presented in Figure 18. The Jz=
± 3

2 part of the ground state has the s-like wave function.
Regarding Jz = ± 1

2 , which is about 16% of the ground
state, it has the d-like wave function (Fig. 19). Certainly,
the lowest state is the s-like state, followed by the p-like
state, then the d-like state, and so on. A degree of the
	 12�-state admixture to the 	 32�-state is determined by the
energy gap between these states and is proportional to
�E±3/2 −E±1/2�

−1. From the data in Figure 18, one can
conclude that the ground state is formed by mixing of the
s-like state from the spectrum of hole with Jz = ± 3

2 and
the d-like state from spectrum of hole with Jz = ± 1

2 . In
this case, the admixture of the 	 12�-states is determined
by the energy gap �E0 = Es±3/2 −Ed±1/2.The first and the
second excited states in QD are formed by mixing of the
p-like states from both spectra. At first glance the character
of these wave functions is not clear. But the superposition
1/
√
2�	�1�±	�2� ·exp�i��� has p-like character (see pan-

els with asterisks in Figure 18) which classifies its parts as
p-like wave functions. In these cases, the energy gaps are
the same ��E1 = �E2 = E

p
±3/2 −Ep±1/2� and the 	 12�-state

contributions are equal. The third excited state is formed
by mixing the d-like state from the spectrum of hole with
Jz =± 3

2 and the s-like state from the spectrum of the hole
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(a) (b)

(c) (d)

(e)
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(h)

c* d *

e* f*

Fig. 18. The wave functions of 	 3
2
�-states and 	 1

2
�-states for first forth levels in quantum dot: ground state (a), (b); first excited state (c), (d); second

excited state (e), (f); third excited state (g), (h). The center right panel presents 	 1
2
�-states; the center left panel presents 	 3

2
�-states. For clarifying the

character of wave functions for first and second excited states, we create the superposition of these wave functions �1/
√
2��	�1�± 	�2� · exp�i��� with

any optimal phase �, which demonstrates p-like character �∗�. Panel c∗ corresponds to “+”, e∗ corresponds to “−” in this superposition; both are
related to the 	 3

2
�-states. Analogously, the d∗ and f ∗ correspond to the 	 1

2
�-states.

with Jz =± 1
2 . In this case, the 	 12�-state admixture is deter-

mined by the energy gap �E3 =Ed±3/2−Es±1/2, the distance
between the interacting energy levels is smaller and the
	 12�-state admixture is higher than for underlying levels. By
this way, one can find the ratio between the energy gaps
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Fig. 19. The schematic sketch of energy spectra of 	 3
2
�-states and 	 1

2
�-

states in the model of noninteracting electronic bands.

in all four cases (�E0>�E1, �E1 =�E2, �E2>�E3) and
explain the degree of the 	 12�-state admixture for the first
four levels in the quantum dot. For higher levels, the inter-
pretation is more difficult because the wave functions of
these states are more complicated, and it is impossible to
classify them as s-like, p-like, d-like, � � � wave functions.
So, the contribution ratio between the 	 32�-state and the
	 12�-state is determined by the energy gap, which depends
on the character of the wave functions of interacting states.
When shape of the pyramid (h/l = 1/10) is preserved,

the spatial distribution of strains and their magnitude in
the quantum dot are not significantly changed by increas-
ing nanocluster sizes. The strain splitting between the light
and heavy hole states remains the same in this case. The
quantum confinement energy becomes smaller for larger
nanoclusters; for example, for nanocluster with sizes l =
100 nm, h = 10 nm, it is about a few millielectronvolts.
Therefore, the ground hole state shifts to the bottom of the
potential well. The excited states are not so sensitive to the
change of the quantum confinement energy because their
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localization lengths are larger than the nanocluster size.
The tails of the wave function penetrate into Si surround-
ing Ge nanocluster. Hence, the shift of the excited states is
smaller than for ground state. The energy gap �E0 between
the s-like state of hole with Jz = ± 3

2 and the d-like state
of hole with Jz = ± 1

2 increases. Consequently, the 	 12�-
state contribution to the hole ground state decreases and
the wave function becomes closer to the heavy hole state.
In this case, the main reason determining the change of
the contribution ratio between the 	 32�-state and the 	 12�-
state is the quantum-confinement factor (the change of the
confinement energy).
The obtained results give the evidence that the knowl-

edge of the hole wave function structure is very important
for interpretation of magnetic properties. Experimentally
the hole g-factor is usually obtained from optical measure-
ments. In these experiments, the photoluminescence spec-
tra in magnetic field are studied.119–121 The hole g-factor
was derived from experimental value of exciton g-factor
(gex) and electron g-factor �ge� using the equation gex =
gh ± ge (“−” for bright excitons, “+” for dark excitons).
To avoid the systematic inaccuracy caused by the exist-
ing of exchange interaction between the electron and the
hole, one must carry out the experiment with “free” hole
(not bounded in exciton). It may be the magneto-tunnelling
experiment, which is analogous to experiment with an
electron.122 In this case, the choice of the direction of mag-
netic field plays an important role because the Zeeman
splitting and the probability of Zeeman transitions are in
strong dependence on the magnetic field direction. For
direction H�z, Zeeman transitions are almost forbidden.
But in the case H⊥z, the Zeeman splitting is vanished.
Therefore, it would be better to carry out the experiment in
the tilted magnetic field when the ground hole state in QD
is sufficiently split and Zeeman transitions are allowed.

3.4. Electronic Configuration of Excitons and
Excitonic Complexes

Ge/Si(001) QDs exhibit a type-II band lineup. The large
(∼0.7 eV) valence band offset in this heterojunction leads
to effective localization of holes in the Ge regions, whereas
these Ge regions represent potential barriers for electrons.
When the hole is captured by the Ge dot, its Coulomb
potential results in binding of an electron in the vicinity
of the Ge dot. The spatially separated interacting electron
and hole are usually referred to as a “spatially indirect
exciton.” To obtain the binding energy of the excitonic
complexes consisting of various numbers of electrons and
holes captured on the Ge/Si QD, a mathematical model of
the excitonic complex based on the effective-mass approx-
imation was developed.85�123�124 The realistic geometry of
the Ge island is included in the model. The length of the
pyramid base is assumed to be equal to 15 nm. Because
only the ground state of the excitonic complex was con-
sidered, the model restricted by consideration of only the

lowest minimum of the conduction band and the highest
VB maximum. From the strain distribution74 and deforma-
tion potential values110 it was found that two � valleys,
oriented along the growth direction, offer the lowest CB
minimum in Si. The heavy hole branch produced the high-
est VB maximum in the Ge island. The confining potential
for electrons and holes consists of the band offset between
unstrained Si and Ge and strain-induced modification of
conduction and valence bands. The band offset values of
0.34 eV for the � minimum of the CB and 0.61 eV for the
VB have been used in model. Values of deformation poten-
tials are taken from Ref. [87]. Effective masses of both
electrons and holes are taken to be anisotropic, and it is
assumed for simplicity that masses are coordinate indepen-
dent. The effective masses in the growth direction and in
the plane orthogonal to it are correspondingly mz and mxy .
The values of longitudinal and transversal effective masses
of the � minimum in Si were used as following: mz =
0�92m0 and mxy = 0�19m0 for the CB. In the VB, these
values are mz = 0�2m0 (the heavy hole mass in Ge in the
�001� directions) and mxy = 0�39m0. The value of mxy for
the VB is taken so as to make the value of averaged effec-
tive mass mav = �mxy�

2/3�mz�
1/3 coincide with the averaged

heavy-hole mass in Ge. The interaction between charged
particles is taken in the form of the Coulomb potential.
To solve the many-particle problem, the Hartree approx-

imation is used; that is, a separable exciton wavefunction is
assumed and the single electron and hole states are deter-
mined self-consistently. The set of Schrödinger equations
was solved by the finite-difference method using the grid
with period of 0.543 nm (the lattice constant of Si) con-
taining 50×50×60 nodes. To reduce an error that arises
from the finite size of the grid, the calculation was per-
formed twice with different boundary conditions applied:
once with Dirichlet boundary conditions (�	boundary = 0)
that gives an upper estimate for energy levels and with
Neumann boundary conditions ���/�n	boundary = 0� that
gives a lower estimate. The arithmetic mean of the two
estimates is taken as a final result. According to the Pauli
principle, filling each VB level with only two holes and
each CB level with only four electrons was permitted. Four
electrons can occupy the same CB level because there are
two equivalent � valleys and two equivalent spin states.
Energies of interband optical transitions corresponding

to adding an exciton to the Ge/Si QD was calculated. The
energy of transition from the empty dot state to the
state with one electron and one hole in the QD was
denoted as E0e0h→1e1h, and so on. Calculated values are
E0e0h→1e1h = 629�6 meV, E0e1h→1e2h = 639�3 meV,
E1e1h→2e2h = 639�8 meV. Therefore one excess hole in the
dot causes an increase of the excitonic transition energy
by 9.7 meV. This blueshift of the excitonic line is a con-
sequence of the spatial separation of electrons and holes,
which is a characteristic of type-II QDs. Indeed, neglect-
ing for simplicity the perturbation of electron and hole
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Ge layer

Ge pyramid

Si e1

e2

h1,h2

5 nm

Fig. 20. Wavefunctions of electrons �e1� e2� and holes �h1� h2� in the
ground state of biexciton. The surface of constant wavefunction equals
to 0.5 of its peak value.

wavefunctions by the second hole in the dot, one may get:

E0e1h→1e2h = E0e0h→1e1h+Veh+Vhh
where Veh and Vhh are electron–hole and hole–hole interac-
tion energies. Because the mean distance between electron
and hole is larger than between two holes, then 	Veh	 <
	Vhh	. Therefore E0e1h→1e2h > E0e0h→1e1h.

In the case of an exciton consisting of one electron and
one hole, the hole is located in the centre of the pyramidal
Ge island, and the electron is confined in the Si vicinity
of the island apex.123�124 This location of the electron is
first, due to, inhomogeneous strain that forms the confining
potential for electrons near the apex of the pyramid and,
second, the Coulomb attraction to the hole. When a new
electron is added to the QD, it is found to be spatially
separated from the first one and located under the base of
the pyramid symmetrically to the first electron Figure 20.
At further filling of the dot, the third electron added to
the apex well, the fourth to the base well, and so on. The
energy of excitonic transition in the QD already contain-
ing an exciton, E1e1h→2e2h, is larger by 10.2 meV as com-
pared with E0e0h→1e1h, the excitonic transition energy in
the empty QD. This follows because the second electron in
the excitonic complex is localized in a shallower potential
well than the first one.
The experimental verification of the calculation results

will be presented in Section 7.1 on the optical properties.
The electron binding energy (i.e., the energy needed to

move an electron to infinity) have been calculated in the
excitonic complex containing different numbers of elec-
trons Ne and holes N . Calculations show that for Ne < 8
QDs can keep N + 1 electrons. For a single layer of Ge
islands, a shallow bound electron state exists even when
no holes are in the dot (N = 0, Ne = 1). This is due to
nonuniform strain of the silicon matrix. The addition of
one electron and one hole to QD gives rise to an increase
of binding energy because, in this case (N = 1, Ne = 2),
the extra electron and hole form a dipole which creates
an additional attractive potential. When N increases, the
binding energy of the N + 1th electron increases up to
N = 2, and then slightly decreases (Fig. 21). For N = 8,
the ninth electron cannot be captured by the QD because
each electronic potential well (above and below the Ge
island) has one fourfold degenerate quantum level, and
both these levels are fully occupied by eight electrons.
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Fig. 21. Binding energy of electron trapped by the Ge/Si QD, as a
function of number of electrons Ne in the excitonic complex. Q is the
total charge of quantum dot (Ne +N ). Curve 1 represents the binding
energy of exciton or excitonic trion, curve 2 corresponds to the energy
of the topmost occupied electron state, curve 3 depicts the energy of the
first empty electron state. (The energies for 2 and 3 are counted from the
CB edge in bulk Si).

In the case when Ne = N (the upper curve in Fig. 21)
potential wells for electrons are deeper than for the case
Ne = N +1 (the lower curve); therefore, the dot with nine
holes can trap the ninth electron. The dependence of elec-
tron binding energy on the number of electrons and holes
provides an explanation for the negative photoconductivity
observed in the n-type Ge/Si QD structure (see Section 7.3
on the optical properties). QDs serve as traps for free
electrons. When electron–hole pairs are photogenerated,
nonequilibrum holes, and electrons are captured by QDs.
As a result, the depth of traps for electrons (or the elec-
tron binding energy) increases with increasing number of
electrons and holes (Fig. 21, lower curve) and therefore
additional equilibrium electrons are trapped. Thus the con-
centration of free electrons decreases under illumination,
and conductivity falls. The negative photoconductivity is
one of the characteristic feature for type-II QDs only.

3.5. Strain Distribution and Electronic States in
Multiple Layers of GeSi/Si Quantum Dots

There are two main types of band-edge alignment, namely
type-I and type-II, in heterostructures with semiconduc-
tor QDs. In type-I QDs, the band gap of the narrow-
gap material lies entirely within the gap of the wide-gap
semiconductor, and both electron and hole are confined
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Fig. 22. Schematic overview of the band alignment in (a) type-I and
(b) type-II QDs. (c) Band structure in Ge/Si(001) QDs modified by a
tensile strain. The conduction band (CB) in Si just above and below
the Ge dot splits into �4 and �2 valleys. (d) Fermi surface in the Si
conduction band.

inside the same region (Fig. 22(a)). A typical example of
type-I band-edge line-up is the InAs QDs in GaAs matrix.
For type-II QDs, the localization inside the dot occurs only
for one of the charge carriers, whereas the dot forms a
potential barrier for the other particle (Fig. 22(b)). A sys-
tem like this is that of Ge/Si(001) dots formed by strain
epitaxy, in which the holes are strongly confined in the
Ge region, and the electrons are free in the Si conduction
band. The above consideration disregards possible modifi-
cation of the band structure due to inhomogeneous strain
in the dots and the surrounding matrix. Tensile strain in
the nearby Si causes splitting of the sixfold-degenerate
�-valleys ��6� into the fourfold-degenerate in-plane �4-
valleys and the twofold-degenerate �2-valleys along the
[001] growth direction. The lowest conduction band edge
just above and below the Ge island is formed by the �2-
valleys yielding the triangle potential well for electrons
in Si near the Si/Ge boundary (Fig. 22(c)). Thus one can
expect three-dimensional localization of electrons in the
strained Si near the Ge dots. The electron binding energy
in a strain-induced potential well in a single Ge/Si QD
was predicted to be very small (<10 meV). This value
is expected to enlarge vastly in multilayer Ge/Si struc-
tures with vertical stacking of Ge islands due to accumu-
lation of strain energy from different dot layers in a stack
and increase of the potential well depth. In this section
we present the results of modeling the strain distribution
and electronic states in Ge/Si QDs stacked in a multilayer
structure.125�126

The stacked QD structure is modeled by fourfold
stacked GecSi1−c QDs aligned along the growth direction
z and separated by Si. The first and second Ge islands in
a stack as well as the third and fourth Ge dots are sepa-
rated by 3-nm Si spacers, while the distance between the
second and third Ge nanoclusters is 5 nm. Each GecSi1−c
QD has a truncated-pyramid shape with base orientation
along [100] (x) and [010] (y) directions. The length of the
base side was 23 nm, the height is 1.5 nm. Each pyra-
mid lies on a 4.5 ML GecSi1−c wetting layer and con-
tains �1−c�×100% Si atoms randomly distributed within
QD. The size of computational cell (GeSi island plus Si
environment) is 50a× 50a× 50a along x, y, and z axes,
respectively, where a= 5�431 Å is the Si lattice constant.
The size of the pyramid base is 28a× 28a, the height is
2a. Calculated strain distribution was then scaled by a fac-
tor of 1.5 in all three dimensions to reach realistic sizes
of Ge/Si island (base length of ≈23 nm and height of
≈1.5 nm). The strain distribution was found in terms of
atomic positions, using VFF model with a Keating inter-
atomic potential. To obtain strain distribution in a stacked
island arrangement, the calculated strain fields of single
islands are superimposed and added in real space. This
approach overestimates the strain in Si by only 10%.68

In order to check whether the calculation volume is large
enough to give the proper (size-independent) result we per-
formed numerical analysis also for smaller computational
cells (32a× 32a× 50a and 32a× 32a× 32a) and found
that the strain distribution does not depends on the size of
supercell to within 5% of accuracy.
It is naturally to expect that the maximum strain is real-

ized in the middle of the stack. The calculated strain com-
ponents along the z and x directions through the centre of
symmetry of a fourfold stack of Ge0�7Si0�3 islands is shown
in Figure 23. The positive strain values correspond to ten-
sile strain and the negative ones to compressive strain. The
tension in the Si above and below GeSi islands is evident.
In the lateral direction the strain in Si relaxes from the
centre at a scale comparable to the diameter of underly-
ing GeSi island and then changes its sign, demonstrating
that the Si is laterally compressed near the edges of GeSi
islands. Above the stack, strain goes to zero with z over a
length of about �= 15 nm.
Now let us consider the strain-modified conduction

band-edge diagram at the �2 valleys in which the electron
localization is expected. The 3D potential energy distribu-
tion of electrons in �2 states with respect to the unstrained
Si conduction band-edge can be expressed as Ref. [110]

V �r�= �Ecx�r�+�dTr�
�r�+�u
zz�r� (18)

where �Ec is conduction band offset between unstrained
Si and GeSi, x�r� = 1 on conditions that the vector r
points to the atom inside GeSi island, otherwise x�r�= 0;
�d and �u are the deformation potentials. The quantity
��d+ 1

3�u� corresponds to ac, the hydrostatic deformation
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conduction band-edge of unstrained Si along the same directions.

potential for the condcution band. Tr�
�r� is equal to

xx+
yy+
zz which is hydrostatic component of the strain.
Values of deformation potentials ac and �u are taken from
Ref. [110]. The conduction band offset between unstrained
Si and Ge0�7Si0�3 is about 0.29 eV.126 The final conduction
band-edge alignment along the z and x directions through
the centre of symmetry of a fourfold stack of Ge0�7Si0�3
islands is shown in Figure 23. One can see that poten-
tial well for electrons is more shallow in the layer plane
(∼100 meV) and just its depth determines the electron
binding energy.
The electron bound states are found by numerical solv-

ing the 3D Schrödinger equation using the effective-mass
approximation:(

p̂2
x+ p̂2

y

2mxy

+ p̂2
z

2mz

)
�+V� = E� (19)

where V = V �r� is defined by Eq. (18). We took the values
of longitudinal and transversal effective masses at the �
minimum in Si as mz and mxy , correspondingly; so mz =
0�92m0 and mxy = 0�19m0. The size of computational cell
is 62×62×120 along x, y, and z axes, respectively, in unit
of three-fourths the lattice constant of bulk Si, i.e., 25�2×
25�2× 48�9 nm3. To calculate the energy levels and elec-
tron wave functions we employ the free-relaxation method
(see, Section 3.2).
In Figure 24 we show the isosurface plots of the charge

density 	�i�r�	2 for the first 6 electronic states. The val-
ues of the electron binding energies Ei �i = 1� � � � �6�
for the same states are shown in Figure 25 for different
Ge contents in the dots. The isosurface level is selected
as 1/e �e = 2�71828 � � �� of the maximum wave-function
amplitude 	�max�r�	. The lowest three electron states are an

E1 = 69 meV

E2 = 57 meV

E4 = 39 meV

E5 = 39 meV

E3 = 57 meV E6 = 39 meV

Fig. 24. Three-dimensional view of the isosurface of the electron
charge density for the six lowest conduction states. The isosurface level is
selected as 1/e (e = 2�71828 � � �) of the maximum wave-function ampli-
tude 	�max�r�	. The probability of finding the electron inside is 70–77%
dependent on the state. Ei is the single-electron binding energy of the
i-th state, determined with the error of ±1 meV. The pyramid base size
is 23×23 nm2, the Ge content in the island c = 0�8.
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s-like state located in different Si spacers, while the next
three are p-like states localized along [001], [110], and
[1̄10], respectively. As expected, the electron ground state
is really confined in the middle of the stack. The electron
wave functions are strongly localized near the tip of GeSi
islands.

4. SINGLE-ELECTRON PHENOMENA

4.1. Single-Electron Tunneling

For the first time, conductance tunneling spectroscopy has
been applied to study single-electron effects in arrays
of self-assembled quantum dots in Refs. [127, 128]. The
vertical structures composed of a layer of Ge quantum
dots separated from two parallel circular electrodes (boron
doped p+-Ge0�3Si0�7 layers) by thin Si tunnel barriers. The
mean dot in-plane diameter was 15 nm. The differen-
tial transversal conductance as a function of applied volt-
age is shown in Figure 26. The upper part of the figure
corresponds to symmetric silicon barriers (both Si lay-
ers consist of a 9 nm thickness). On the bottom of the
figure, we display conductance spectrum for the sample
in which the tunneling barriers are different in thickness
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Fig. 26. Transversal differential conductance versus bias voltage for
samples with different Si barrier thickness. The upper panel corresponds
to symmetric Si barriers of a 9 nm thickness. On the bottom of the figure
we display conductance characteristic for the sample, in which the Si tun-
neling barriers are different in thickness (9 nm and 6 nm, respectively).

(9 nm and 6 nm, respectively). The positive-bias direction
is defined as that with holes moving from the top con-
tact to the substrate passing first through the thick barrier
and then through the thin one. In both cases, the well-
pronounced conductance oscillations were observed at T =
4 K, implying the existence of a sharply defined discrete
hole spectrum in the Ge islands. Note that the negative
differential resistance (NDR) region appears to be around
zero bias. The effect of NDR is a typical feature for res-
onant tunnelling of carriers into bound states in double-
barrier structures.
A sample with symmetric barriers exhibits oscillations,

which are periodic in voltage, of period 150 mV. This
allows us to estimate the level spacing in the islands to be
150/2= 75 meV. In the asymmetric structure, the conduc-
tance peaks at negative bias are split into oscillations with
a smaller period. An accumulation of holes is expected
at resonance when holes are injected through the thinner
emitter and are inhibited from tunnelling out due to the
lower transition coefficient of the thicker collector. In this
case, interaction effects should be important. An extra hole
has to overcome the electrostatic repulsion of all charge
already on the dot, thereby lifting degeneracy of the single-
particle levels. For the other bias polarity, no charging will
occur because an injected hole will leave the dot through
the other side sooner than the next hole enters. A simi-
lar effect, usually observed in tunnel junction containing
metallic droplets, is referred to as the “Coulomb staircase.”
From the conductance peak spacing, we find the charg-
ing (correlation) energy 36 meV for the ground state and
18 meV for the first excited state.

4.2. Single-Electron Charging

The capacitance tunneling spectroscopy of quantum dots
is based on the fact that the charge in zero-dimensional
systems can be changed only by a discrete amount �Q =
eNQD, where e is the electron charge and NQD is the num-
ber of quantum dots in the sample.129

The external voltage Vg on the control electrode which
biases the potential in the quantum dots with respect to
the Fermi level in the contact and which is separated from
the island layer by a tunneling-transparent barrier, stim-
ulates either capture of carriers from the contact to dot
energy levels or the emptying of these levels, depending
on the polarity of Vg. When the Fermi level in the contact
coincides with the energy of the bound state in a dot, the
differential capacitance C�Vg�= dQ/dVg should exhibit a
peak, attesting to the presence of a discrete energy level.
The total capacitance of the structure is a sum of two con-
tributions: The first contribution is due to the presence of
a space charge region in the carrier-depleted silicon layer,
while the second contribution is due to charging of the
quantum dots.
In the Schottky diodes with Ge quantum dots, we varied

the equivalent Ge thickness deff .
130�131 The heterostructures
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employed in our experiments consisted of the following
sequence of layers, starting with the substrate:
(1) A p+ silicon substrate with (100) orientation and hole
density p = 1019 cm−3.
(2) A Si0�8Ge0�2 layer of thickness L= 10 nm, ensuring a
sharp heterointerface of the subsequent Si tunnel barrier.
(3) A tunnel Si barrier, p = 7×1016 cm−3, L= 7 nm.
(4) A layer of Ge SAQDs.
(5) A Si blocking layer, p = 7×1016 cm−3, L= 50 nm.
(6) An Al control electrode, forming a Schottky barrier on
the silicon surface; the area of the Al electrode was equal
to 8× 10−3 cm2, and a cylindrical mesostructure of this
size was etched out to a depth of the order of 5 �m.

The capacitance–voltage characteristic for the sample
without a Ge layer is featureless and has the form of stan-
dard curve of a p-Si Schottky barrier (Fig. 27). In the case
deff = 2 ML, a plateau characteristic for a two-dimensional
carrier gas appears in the voltage range Vg = 0�1–0�3 V.
In the range of equivalent Ge thickness 8≤ deff ≤ 13 ML,
two peaks appear on the C–V curves at positive polar-
ity. The splitting between these peaks and their width and
position on the voltage (energy) scale depend on deff : as
deff increases, the peaks become narrower and the energy
gap between them decreases. The energy gap �E between
the states that correspond to the capacitance peaks can be
found from capacitance data using �E= e�Vgb/LT, where
�Vg is the voltage splitting between peaks, b is the dis-
tance from the dot layer to the substrate, LT is the total
thickness of the epitaxial structure. The calculations yield
�E = 87 meV for the 8 ML sample (dot lateral dimension
l = 10 nm), 36 meV for deff = 10 ML (l = 15 nm), and
32 meV for the 13 ML sample (l = 25 nm). The value
�E = 36 meV for the structure with 10 ML Ge cover-
age is in a reasonable agreement with the charging energy
in the ground state EC = 36 meV obtained previously in
the tunneling spectroscopy experiments (Section 4.1). This
makes it possible to interpret the two capacitance peaks
as a hole ground state splitting by the electron–electron
interaction.

The appearance of capacitance oscillations has been
attributed to the formation of an array of Ge nano-
clusters130�131 whose sizes are quite uniform and, hence,
the density of hole states in the array is a �-like function
of energy. The area under each capacitance peak divided
by the electron charge turns out to be equal to the areal
density of the islands [�3–4�×1011 cm−2]. This means that
(i) all the Ge dots are involved into the charging pro-
cess and
(ii) the level degeneracy is lifted by the interaction indeed.

Further confirmation of the Coulombic origin of the split-
ting has been revealed by capacitance spectroscopy of
samples containing two layers of the Ge islands in close
proximity.130 We have observed that in the double-layer
structures the peak splitting increases due to Coulomb
interaction between the dots in successive layers.

4.3. Tunneling Currents in Schottky Diodes

A schematic representation of a structure used for investi-
gation of the tunneling currents in Ge/Si Schottky diodes
with Ge SAQDs is shown in Figure 28. The samples
were made in the variant of Schottky diodes with a
short base in order to decrease the barrier height at the
metal-semiconductor contact through the Schottky effect
and, hence, to observe experimentally the change in the
effective barrier height due to the electrostatic charging
of QDs.132

n-Si(001) substrate

50 nm i-Si

B delta-doping plane

20 nm p-Si

20 nm p-Si

Ti/Al

Au

Ge dots

Fig. 28. Schematic representation of a cross-section of a silicon
Schottky diode with Ge quantum dots.
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The current–voltage characteristics of the metal-
semiconductor junction are often written in the form I =
Is�exp�eV /nkBT �−1, where Is is the diode saturation cur-
rent, n is the ideality factor. At a low doping level and rela-
tively high temperatures, n is close to unity. The deviation
of n from unity in Schottky diodes is mainly associated
with the appearance of the tunneling current component;
therefore, an analysis of n provides information on tunnel-
ing processes in structures with SAQDs.133

The ideality factor for reverse bias is determined by the
equation134

n�V �= e

kBT

�V

� ln
[
I exp�eV /kBT �
exp�eV /kBT �−1

] (20)

Figure 29 displays experimental curves of n versus
the reverse bias for samples with various amount of Ge
deposited deff . As deff increases, the ideality factor grows,
and peaks appear in n�V � curves at deff ≥ 5 ML, which
points to a resonance character of the tunneling current.
Resonance tunneling processes are a characteristics fea-
ture of the charge transport in double-barrier structures
of reduced dimensionality and are due to the quantiza-
tion of the energy spectrum of electrons, or holes, in the
region confined between the barriers. As the reverse bias
increases, the energy levels of holes in the QD layer, in
turn, reach a resonance with the quasi-Fermi level in the
metal. In this case, the probability of tunneling through
the Schottky barrier and, hence, the ideality factor must
increase, which is actually observed in experiments.132

A peak in n�V � at voltages V ≈ 1�1 V is observed for all
samples containing a Ge layer; therefore, it can be asso-
ciated with the penetration of holes through the energy
level of a two-dimensional state in the wetting Ge layer,
because this layer is the same in all samples. The peaks
at lower voltages in samples with deff = 8 and 10 ML are
due to the tunneling of holes through discrete levels in
QDs lying above the energy level in the wetting Ge layer.
The period of oscillations in curves n�V � is reproduced
sufficiently well at various temperatures (Fig. 29(b)). The
average period at deff = 10 ML is �V = 160 mV. Assum-
ing that the QD layer is introduced exactly in the middle
of the diode base and neglecting the bend bending due to
the potential of the ionized impurities in the diode base,
one can estimate the energy gap between the hole levels
in Ge SAQDs as �E ≈ e�V /2 = 80 meV. This value is
in a reasonable agreement with the value of the quantiza-
tion energy in the same Ge QDs determined by resonant
tunneling in p+–i–p+ structures (see, Section 4.1).
The experiments described above demonstrate that the

phenomenon of oscillations of the ideality factor in the
case of a reverse bias in Schottky diodes with SAQDs may
serve as a basis for the development of a new method
of electron spectroscopy of energy levels in systems with
reduced dimensionality.

5. HOLE AND ELECTRON ENERGY
LEVELS PROBED WITH ADMITTANCE
SPECTROSCOPY

5.1. Energies of Hole Ground States

Admittance spectroscopy is a well-known method to char-
acterize deep impurity levels in semiconductors.135 In these
experiments, the ac conductance G of a pn junction or
Schottky diode with the electronic states of interest is mea-
sured as a function of temperature for a fixed reverse bias
Ub and test frequency � = 2�f . In the case of a deep
trap the correlation between thermal emission rates and the
binding energy can be easily worked out from the detailed
balance between thermal emission and thermal capture
rates of charge carriers. For a QD system the mecha-
nism of ac response is suggested to be similar to those
commonly considered for defect states.136–138 An analysis
of the QD ac response based on the Shockley-Read-Hall
dynamics was made by Chang et al.139 The small ac volt-
age with a frequency � will alternatively fill and empty the
QD carrier levels located in the space-charge region. The
thermionic emission rate of holes from the dots as well as
from deep impurities depends exponentially on tempera-
ture T ,140 i.e.,

ep�T �= B�pT 2 exp�−Ea/kBT � (21)

where B = 16�m∗k2B/gth
3 is a temperature independent

factor, m∗ is the effective mass of the density of states, h
is the Plank’s constanct, �p is the capture cross section,
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Ea is the activation energy being determined by the actual
path whereby holes escape from the dots to the Si valence
band. Following this approach, the QD ac conductance is
given139

G���T �= Sq2AnQDNq

� QD

�Ub

f �1− f �
kBT

(
�2�

1+�2�2

)
(22)

where Nq is the number of quantum hole states in the
dot, and � = �1− f �/ep is the characteristic time for the
hole exchange between the QDs and the barrier. The func-
tion f �1− f � exhibits a peak when f = 1/2. Then, for a
given measurement frequency, the conductance G reaches
a maximum at a temperature Tmax which corresponds to
the condition139

�= 1
�
≈ 2ep�Tmax� (23)

By measuring the G�T � dependencies at various �, the
activation energies of hole emission rate can be deduced
from the Arrhenius plot of ep�Tmax�/T

2
max versus 1/Tmax.

With changing of the reverse bias Ub, the chemical poten-
tial scans through the density of hole states in the QD
layer. At higher reverse bias, the chemical potential crosses
deeper states in the dots. Thus, from the temperature-
and frequency-dependent measurements at different Ub the
energy of hole emission from different confined states can
be determined.
In this section, we discuss the experiments in which

the admittance spectroscopy has been used to study the
energy levels of both electrons and holes confined in Ge/Si
SAQDs.
First we describe experiments with p-type structures. In

Figure 30 we display the capacitance–voltage (C–V ) and
conductance–voltage (G–V ) characteristics for Al/p-Si
Schottky diodes with embedded layers of Ge nanoclusters.
The area of the Al contacts was A = 4�3× 10−3 cm2.
Samples were grown by molecular-beam epitaxy on a
p+-Si(001) substrate with a resistivity of 0.005 ! cm
doped with boron up to a concentration of ∼1019 cm−3.
A Ge layer about 6 ML thick was introduced into the
0.7-�m epitaxial p-Si layer (boron concentration is ∼3×
1016 cm−3) at a distance of 0.4 �m from the substrate.
Here we varied the Ge deposition rate from R= 0�02 ML/s
to R= 2 ML/s while maintaining the substrate temperature
(500 �C) and Ge coverage being the same for all samples.
The structural properties of similar samples were discussed
in Section 2.6. For all devices, we observe a plateaulike
structure caused by an additional capacitance due to posi-
tive charge trapped in the dot layer. Figure 31(a) shows the
temperature evolution of the C–V and G–V characteristics
of the device with the Ge layer grown at R= 2 ML/s for
a test frequency of f = 10 kHz. Similar graphs were also
obtained for the other p-type QD samples. At high temper-
ature, there is a well-pronounced capacitance plateau from
0.2 to 4 V associated with the positive charge accumula-
tion in the dot layer.141 The width of a plateau depends
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on the steady-state occupation of hole levels in the dots.
Due to the p-type doping in the Si matrix, the Ge QDs
are charged by holes at a zero bias. When a reverse bias
is applied to the diode, the holes are gradually swept from
the shallower QD states to the deeper states. At Ub � 4 V,
all holes escape from the QDs and the QD contribution to
the measured capacitance disappears.
The corresponding step in the capacitance is accompa-

nied by the peak in the measured parallel conductance near
the edge of the capacitance plateau. The emergence of
a conductance peak can be regarded as a fingerprint of
a resonant condition for charging/discharging the QDs,
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Fig. 31. (a) Temperature dependence of the capacitance–voltage and
conductance–voltage characteristics measured at f = 10 kHz. (b) C–V
and G–V characteristics measured at T = 241 K for various frequencies.
The layer of Ge QDs was deposited at R= 2 ML/s.
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which is �� = 1. The characteristic time � for hole
exchange between the dots and the barrier depends on
both the QD confined energies and the temperature. At
low temperatures, holes freeze onto deep states in the dots
and do not participate in the ac response. Therefore, as
the temperature is reduced, the capacitance plateau is sup-
pressed and the conductance peak shifts towards lower
biases, at which the applied ac frequency resonates with
emission rate from shallower QD states. Similarly, the res-
onant condition should be fulfilled at a lower bias for a
higher frequency. Figure 31(b) shows the C–V and G–V
traces recorded at T = 241 K for different test frequencies.
A clear shift of the capacitance step and the conductance
maximum towards lower biases is seen as the frequency is
increased. This is consistent with the arguments outlined
above.
The temperature dependencies for both the capacitance

and the normalized conductance measured at different
modulation frequencies and bias voltages are displayed
in Figure 32. The behavior of C�T � and G�T �/� can
be qualitatively explained as follows. At a fixed bias, the
charging/discharging process corresponds to the QD hole
level coinciding with the Fermi level in undepleted part of
the p-Si buffer layer. The rate of hole emission from this
level becomes more slow when the temperature is reduced;
therefore, with a decrease in the modulation frequency,
the condition for the capacitance step and the conduc-
tance maximum (23) is satisfied at lower temperatures
(Fig. 32(a)). With an increase in reverse bias, the holes
localized at deeper QD levels, for which condition (23)
at a fixed frequency is satisfied at higher temperatures,
contribute to the admittance signal. For this reason, the
capacitance step and the conductance peak in Figure 32(b)
shift towards higher temperatures with increasing Ub.
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At Ub > 4 V, Ge QDs become completely depleted and the
maximum on the G�T �/� curves disappears. This is con-
sistent with the observation from the C–V measurements
of the same sample.
Figure 33(a) shows the typical dependencies ep/

T 2
max�T

−1
max) obtained using Eq. (23) from the temperature

variation under different modulation frequencies. The acti-
vation energies Ea of the hole emission rate were found
from the slope of the approximating straight lines. The lin-
ear correlation coefficients of all the lines are larger than
0.9995. The resulting values Ea for three QD samples are
shown in Figure 33(b) as a function of reverse bias voltage.
Note that the energies Ea are quite close to the ground-
state hole energy levels calculated for such GeSi QDs (see,
Fig. 13). For all samples, the activation energy decreases
with decreasing of the bias voltage. With increasing of the
reverse bias, the chemical potential scans through the den-
sity of hole states in the QD layer. At higher reverse bias,
the chemical potential crosses deeper states in the dots. In
QDs, which can be charged by more than two carriers and
in which conclusively higher energy levels than the ground
state are occupied, the dependence of the activation energy
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on the QD occupation is usually attributed to the state-
filling effect.138�142 However, the effect of state-filling is
not relevant in a system of small QDs which are studied in
this paper and contain no more than two holes. Thus, the
change of the activation energy with bias may be attributed
to the dispersion of the hole ground state eigen energy due
to the size distribution of the quantum dots.

5.2. Localization of Electrons in Multiply Layers of
GeSi/Si Quantum Dots

Admittance spectroscopy was also employed to obtain
the experimental evidence for the electron localization
in the strain-modified Si conduction band of a stack of
four layers of GeSi QDs embedded in an n-type Si(001)
matrix.126 This phenomenon was analyzed theoretically in
Section 3.5.
For the experiments, GeSi/Si heterostructures with GeSi

islands were fabricated on a n+-Si(001) substrate with a
resistivity of 0.01 ! cm doped with antimony up to a
concentration of ∼1019 cm−3. A fourfold stack of GeSi
islands was inserted into the 0.8-�m epitaxial n-Si layer
at a distance of 0.5 �m from the substrate. The amount of
deposited Ge was gradually reduced from 6 ML in the first
layer to about 4 ML in the fourth layer to ensure defect-
free island formation with equal island sizes and densities
in all layers.143�144 The n-type remote doping was achieved
by insertion of a Sb �-doping Si layer 0.2 �m below the
GeSi QD layer. The first and second Ge layers in the stack
as well as the third and fourth Ge layers are separated by
3 nm Si spacers, while the distance between the second
and third Ge layers is 5 nm (the same structure was mod-
eled theoretically in Section 3.5). As it has been demon-
strated in Ref. [126], Ge nanoclusters fabricated by such
a way demonstrate good vertical correlation. From cross-
sectional transmission electron micrographs, we observe
the GeSi dots to be approximately 20 nm in lateral size and
about 2 nm in height. The scanning tunneling microscopy
of a sample without the Si cap layer showed that the Ge
islands have a shape of hut clusters. The density of the
dots is about 1011 cm−2. The average Ge content of 80%
in the islands was determined from Raman measurements.
To separate response from the stacked GeSi/Si islands, the
reference sample was fabricated under conditions similar
to the multilayer sample, except that only a single layer
of GeSi QDs was grown. For the capacitance and con-
ductance measurements, Pd Schottky gates with the area
of 7�5× 10−3 cm2 were deposited on top of the samples
through a shadow mask.
Figure 34 shows experimental C–V characteristics for

the reference and the multilayer samples. The dependence
of the capacitance on voltage for the single-layer sample
has the form of the conventional C–V characteristic of
an n-type Schottky diode. For the multilayer sample, we
observe a steplike structure, which we associate with the
negative charge accumulation in the Si layers between the
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samples with an n-type doping. The inset displays the apparent elec-
tron distribution derived from the measured C–V curves using the full
depletion approximation.

stacked Ge islands (see, inset of Fig. 34). The QD contri-
bution to the capacitance disappears at temperatures below
∼50 K (Fig. 35) due to “freezing” the electrons in the
�2 bound states in the strained Si. The corresponding step
on the temperature dependence of capacitance is accom-
panied by the conductance maximum (peak C in Fig. 35)
which is not seen for the reference sample. Thus we may
attribute the conductance peak C to the ac response of
electrons confined in GeSi/Si islands stacked in a multi-
layer structure. With increasing reverse bias, the position
of peak C shifts towards higher temperatures, its ampli-
tude gradually decreases (Fig. 36) and the peak disappears

100

150

200

250

0 50 100
0

20

40

60

C
 (

pF
)

A B

C

Single

layer

Multilayer

sample

Dopant-related
 peaks

ac response from QDs

G
/ω

 (p
F)

Temperature (K)

Fig. 35. Temperature dependence of conductance and capacitance mea-
sured at bias voltage Ub = 0 V and modulation frequency of 1 MHz for
the single-layer sample (green line; only conductance is shown) and for
fourfold GeSi/Si island stack (red and blue lines).
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at voltages 	Ub	 > 1 V just after the ending of the QD-
related capacitance plateau in C–V characteristic. Peaks A
and B are observed in both samples. They are assigned
to a dopant-related admittance signal associated with the
carrier freeze-out effect in the highly doped �-doping Si
layer (peak A) and in Si layers with a lower doping Sb
concentration (peak B).145�126

Typical conductance spectra measured at different fre-
quencies are shown in Figure 37. Admittance signal orig-
inated from electron traps can be used to extract the
electron binding energy. For a given measurement fre-
quency � = 2�f , the conductance reaches a maximum
at a temperature Tmax which corresponds to the condition
en�Tmax� ≈ �/2, where en = e0 exp�−Ea/kT � is the emis-
sion rate of electrons from the bound to extended states
which depends on the electron binding energy Ea. Just as
in Ref. [136], we assume the preexponential factor e0 to
be temperature independent because it is not a priori clear
how the e0 depends on temperature for shallow levels in
QDs. Arrhenius plots necessary for deriving the activation
energy are depicted in inset of Figure 38. The activation
energies of the electron emission rate were found from the
slope of the approximating straight lines. The resulting val-
ues of Ea are shown in Figure 38 as a function of reverse
bias voltage. The theoretical values of electron binding
energies Ei found in Section 3.5 are shown in Figure 38
by arrows. Obviously, the calculated Ei agree well with
the experimental data providing the evidence for the elec-
tron confinement in GeSi/Si QDs stacked in a multilayer
structure.
In summary, admittance spectroscopy was employed to

study electronic structure of single and multiple layers
of GeSi islands embedded in an n-type Si(001) matrix.
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For a multilayer sample, the evidence for an electron local-
ization in strained Si in the vicinity of GeSi dots was
found. From the admittance measurements the electron
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binding energy was determined to be 40–70 meV. The
electron accumulation was not observed in a sample with
a single layer of GeSi islands. Existence of localized elec-
tronic states is explained by a modification of the con-
duction band alignment induced by inhomogeneous tensile
strain in Si around the buried GeSi dots.

6. HOLE TRANSPORT AND
CORRELATION EFFECTS

In a single quantum dot weakly coupled by tunneling bar-
riers to two leads, the interplay of single-electron charg-
ing effects and resonant tunneling through quantized states
leads to conductance oscillations as the electrochemical
potential of the dot is tuned.146 This phenomenon under-
lies working of nano-scale single-electron transistors that
have a number of practical uses, ranging from metrology to
computing. Recently, researches focused on the double-dot
systems147 whose behavior is found to be mainly affected
by electrostatic coupling between the two dots inside the
artificial molecule. The next step is to create and study
large arrays of QDs in close proximity, allowing Coulomb
interaction and tunneling between them.148 Such systems
can be considered as potential electronic networks for
quantum computers149 and therefore are particularly valu-
able in future high-power digital processors. The behavior
of a multi-dot structure is expected to be more complicated
for several reasons:
(1) The QDs are inevitably not sufficiently identical in size
that can cause smearing of their atomic-like properties.
(2) In contrast to a single dot, the interaction of the
charged dots in an ensemble can be significant.
(3) Transport through the system may be dominated by
thermally assisted hopping between the dots rather than by
resonant tunneling between source and drain electrodes.

Variable-range hopping (VRH) is a general conduction
mechanism in systems with strongly localized carriers at
sufficiently low temperatures. In a regime of VRH, the
hopping distance increases as temperature is lowered, and
the temperature dependence of conductivity is given by

G�T �=G0 exp�−�T0/T �x (24)

where, in the two-dimensional case in the absence of long-
range Coulomb interaction, the exponent x= 1/3 and T0 ≡
TM ∝ �g�EF�"

3−1 (Mott VRH); g�EF� is the density of
states in the vicinity of the Fermi level EF and " is the
localization radius. If the interaction energy of a displaced
electron and the hole it leaves behind is large compared
with disorder energies, the conductivity is described by the
Efros-Shklovskii (ES) law with x = 1/2 and T0 ≡ TES ∝
e2/�
r"�, where 
r is the relative permittivity.
In this section, we describe a set of experiments in

which we have studied hopping transport in Si metal-
oxide-semiconductor field-effect structures containing a
two-dimensional array of Ge self-assembled quantum dots

as a conductive channel.91 The dots are separated from
each other by weakly doped silicon, and the only con-
duction mechanism at low temperatures is tunneling of
holes between them. The pseudomorphic Ge islands grown
epitaxially on a Si(001) surface exhibit a large band dis-
continuity in the valence band and can be viewed as dop-
ing “artificial atoms.” They provide a system in which
the number of confined holes, the structure of energy lev-
els, the shape of wavefunctions, and the strength of
interaction can be controlled. First, we discuss the field
effect and the temperature dependence of conductance of
the samples with dots whose occupation with holes was
changed by varying the potential of a gate electrode. Sec-
ond, we describe the effect of screening in samples in
which the holes on the dots are supplied by a boron
�-doping layer near to the QD layer. And, finally, we dis-
cuss the phenomenon of spin correlations in the hopping
magnetoresistance.
Samples were fabricated on a silicon-on-insulator

(SIMOX) wafer (p-type Si substrate, 400 nm buried SiO2

and 170 nm top Si) or on a semi-insulating p-Si substrate
with resistivity of 1000 ! cm by molecular-beam epitaxy
in the Stranskii-Krastanov growth mode. The amount of
Ge deposited was 10 ML, the deposition temperature Ts =
300 �C. From scanning tunelling and transmission electron
micrographs of similarly grown samples, we observe the
Ge dots to be approximately 15 nm in diameter and 1.5 nm
in height. Their dimensions vary within a 20% range. The
areal density of the dots is 3×1011 cm−2.
For the field effect measurements, the channel was pat-

terned by photolitography to form a Si island of 100 �m
width and 108 �m length, etched down to the underlying
SiO2 (Fig. 39(a)). The thickness of the Si cap layer (dSi)
in this case was 40 nm. Source and drain electrodes were
made using Al evaporation and annealing at 450 �C in a
N2 atmosphere. A plasma-enhanced chemical-vapor depo-
sition oxide of 60 nm thickness was deposited as the gate
insulator and, finally, a square-shaped (100×100 �m2) Al
gate was deposited. (The distance between the gate and
the dot layer in this set of samples, 100 nm, was large
enough to avoid screening effects in the temperature range
investigated.) The active channel of this type of samples
contains about 3×107 Ge dots.
In the samples used for the experiments with screening,

the holes on the dots are supplied by a boron �-doping
layer near to the QD layer (Fig. 39(b)). The number of
holes per a dot was varied from 1/2 to 13/2 by varying
the doping. The silicon cap layer has a thickness of dSi =
10 nm. Au source and drain electrodes were deposited on
top of the structure and heated at 400 �C to form repro-
ducible Ohmic contacts. A thin (dSiO2

= 25 nm) layer of
anodic SiO2 was grown to separate the conductive chan-
nel (dot layer) from a Au screening electrode (100 nm
thick) which was deposited over the oxide parallel to the
dot layer. The screening layer was only deposited between
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Fig. 39. Schematic diagram of the structure of the samples used for
the field effect experiments (a) and for the experiments with screen-
ing (b). Screened samples are defined by the contacts 1 and 2, whereas
unscreened samples are measured between 2 and 3. Each sample is a
strip 7 mm long and 5 mm wide.

contact 1 and 2 and this area (7× 5 mm2) provides the
screened sample with a screening length d = dSi+dSiO2

=
35 nm. A corresponding unscreened sample is provided by
the area between contacts 2 and 3 which has no screening
layer. Samples prepared in a similar way but containing
no dots were not conductive at low temperatures.

6.1. Field Effect in Array of
Charge-Tunable Quantum Dots

The channel conductance �G≡ Id/Vd� of a sample shown
in Figure 39 versus the gate voltage in linear and semilog-
arithmic plots is depicted in Figure 40. At room tem-
perature, the G–Vg characteristic shows a shoulder which
evolves into a broad conductance peak in the voltage
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The temperature decreases from top to bottom.

range from 2 V to 6 V as the temperature decreases.
To analyze the peak’s structure, we subtract the smoothly
varying background (see below). After the background is
subtracted, the conductance modulation can be very well
described by a sum of four Gaussian peaks. Figure 41
demonstrates the result of decomposition of the several
experimental curves into four Gaussians, labeled as QD6,
QD5, QD4, and QD3. We label the dot states in terms of
the number of holes on each dot. For example, the peak
observed at Vg ≈ 5�5 V is labelled QD3 because it corre-
sponds to loading of the third hole into the dots, this hole
entering the first of the excited states with the two ground
state levels already fully occupied. The peak corresponds
to a mean loading of 5/2 holes per dot.
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The position of those peaks as a function of temperature
is displayed in Figure 42. Clearly, the fourfold structure
with a gate voltage separation �Vg ≈ 0�7 V between the
peaks is well-defined and completely reproducible over the
whole temperature range. The observed shift of the peak’s
position to lower gate voltage at T > 80 K is attributed
to the temperature induced diminishing of the Si and Ge
band gaps. This effect is commonly observed in the pho-
toluminescence measurements performed on the samples
with QDs at different temperatures.
To demonstrate that the observed conductance peaks

come from charging of the quantum dots, we first esti-
mate the charge density induced by the change in the gate
voltage �Vg and compared this quantity with the den-
sity of QDs. A change of gate potential �Vg induces a
change �n in the two-dimensional carrier density given by
�n= Cg�Vg/e, where Cg is the capacitance per unit area
between the gate and the dot layer. Taking the geometrical
parameters of the gate, relative permittivity 
r = 3�9 for
SiO2, �Vg = 0�7 V for the separation of successive peaks,
and supposing the electrostatic fields are 1-dimensional,
we find Cg = 4�7×10−4 F m−2 and �n≈ 2�1×1011 cm−2.
The latter value is consistent with the density of quantum
dots, nQD ≈ 3× 1011 cm−2, strongly supporting the inter-
pretation that each constituent conductance peak originates
from loading of one hole into each dot. The maximum con-
ductivity occurs when the given level is half-filled as this
maximizes the product of possible initial and final states
for the tunnelling process that avoids increasing on-site
correlation energy.
The above analysis can be checked by using C–Vg mea-

surements to verify the electrostatics necessary for charg-
ing of the dots. We measured the capacitance between
the source and drain connected together and the gate.
Remember that the source and drain contact the underly-
ing Si. The 100 kHz C–Vg characteristics at T = 300 K
and at 4.2 K are shown in Figure 43. The capacitance
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Fig. 43. Capacitance–voltage characteristics. The capacitance was mea-
sured between the source and drain joined together and the gate. Inset:
Temperature dependence of FWHM of the QD3 peak in Figure 41 with
a linear fit to the data.

falls with increasing Vg corresponding to the increasing
depletion layer thickness in the Si below the gate oxide.
At 4.2 K, we see, superimposed on the falling capaci-
tance, structure in the 3–6 V range associated with fill-
ing of the excited state and also structure in the 8–9.5 V
range which we attribute to filling of the twofold degen-
erated ground state. We may use values of Cg together
with the background acceptor concentration in the Si, NB =
7×1016 cm−3 (determined by Hall measurements) to esti-
mate the electrostatic configuration at various values of Vg.
At Vg = 9�5 V, just before filling of the ground state lev-
els, Cg ≈ 3�4 pF which corresponds to the depletion layer
extending to some 88 nm below the dot layer. The corre-
sponding band bending between the deep Si and the dot
layer is 414 mV. Just before the extended states start to
fill, Cg ≈ 3�7 pF and the depletion thickness below the
dot layer is 62 nm with a corresponding band bending of
220 mV. These simplistic results are compatible with the
known Si–Ge valence band offset and the expected ener-
gies of the hole bound states.85 After the excited states are
filled, Cg ≈ 4�7 pF implying that the effective boundary of
the depletion region is now at the dot layer. The depletion
layer thickness dd then continues to fall as Vg is decreased.
At Vg = 0 V, dd = 23 nm and the dot layer is about 17 nm
into the unperturbed Si. The capacitance measurements are
thus consistent with the interpretation of the conductivity
results.
At large positive Vg, capacitance only decreases weakly

with increasing gate voltage in contrast to the conductance
which shows a strong rise (see Fig. 39). Separate measure-
ments confirm that in this region leakage current through
the insulator becomes comparable with the source–drain
current. Therefore we conclude that the apparent increase
of background conductance at Vg > 6 V is is a result of
leakage through the gate SiO2.
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The energy level separation (�E) of the different charge
states in the dots can be estimated by using �E = #e�Vg,
where the gate modulation coefficient # relates the gate
voltage to the hole energy inside the dot. This coefficient
can be determined in two ways. One way is to calculate
# from the temperature dependence of the full width at
half maximum (FWHM) of the conductance peaks which
should be broadened with T as 3�5kBT /�#e�. By measur-
ing the FWHM of the peak QD3 as a function of temper-
ature (Fig. 42), we obtain # = 3�4× 10−2 with a residual
FWHM of about 0.37 V which is a result of statistical
fluctuation in the dot ensemble. Another way of calculat-
ing # has been proposed in Ref. [151]. When most of
the charge induced by a change of gate voltage, �Vg, is
captured by the QDs as discussed above, then the change
in potential of the dot is given by � = e�n/CQD =
Cg�Vg/�nQDCQD�, where CQD is the dot self-capacitance.
Thus # = � /�Vg = Cg/�nQDCQD�. The value of CQD for
a disk-shaped dot with diameter D in classical electrostat-
ics is given by CQD = 4
r
0D. For D = 15 nm and 
r =

Si = 11�7, this yields CQD = 5�5 aF and # = 3�5× 10−2.
Obviously, the agreement between the two above estimates
of the gate voltage-dot energy modulation coefficient is
very satisfactory. Based on these calculations the estimated
charging energy is about 23 meV. Again, this value is con-
sistent with the results of tunneling spectroscopy described
in Section 4.1.
A useful way to identify the mechanism of carrier trans-

port is to study the temperature dependence of conduc-
tance. In the regime of resonant tunneling through discrete
energy levels, conductivity depends weakly on tempera-
ture. The current peak height should increase as the tem-
perature is reduced due to diminished thermal broadening
of the resonance. In contrast, hopping conduction is ther-
mally activated. Figure 44 shows the temperature depen-
dence of the four conductance peaks, QD3–QD6. For all
maxima (symbols) we see a temperature-dependent activa-
tion energy reminiscent of variable-range hopping. A best
fit to these curves (dotted lines) indicates that below 100 K
the temperature dependence can be described by Eq. (24)
with x � 0�5 and T0 = 395–565 K (see Table III).
We can check the hopping model for our structure and

extract a value of localization radius " by making a quan-
titative comparison with the theoretical prediction. With
kBT0 = 6�2e2/�4�
r
0") (Ref. [152]) the spatial dimen-
sion of the wave functions is found to be " = 15–21 nm
(Table III). For variable-range tunneling to be occurring,
the temperature dependent optimum hop distance Ropt =
0�25"�T0/T �

1/2 must be larger than both the localization
length and inter-dot distance (3–4 nm). At T = 10 K and
with T0 = 395–565 K, we have Ropt = 29–34 nm. There-
fore these conditions are satisfied.
To obtain further evidence to support a hopping mech-

anism in the MOSFET, we have fabricated two test sam-
ples without any oxides or gate. Both samples contain a

0.00 0.05 0.10 0.15 0.20 0.25
10–11

10–10

10–9

10–8

10–7

10–6

10–5

T (K)

20 10 5

QD6

QD5

QD4

QD3

B

A

Pe
ak

 c
on

du
ct

an
ce

 (
O

hm
–1

)

T–1 (K–1)

Fig. 44. Temperature dependence of the conductance maxima (sym-
bols). Dotted lines are the best fit of the experimental data to Eq. (24).
Broken and solid lines represent the temperature dependence of conduc-
tance in the test samples A and B, respectively (see the text).

remotely doped layer of Ge SAQDs grown on a semi-
insulating Si(001) substrate. In sample A the doping level
is such that only the ground state contains holes, there
being 3/2 holes per dot taken from impurities, while in
sample B, the ground state is full and the first excited state
is partially occupied with a total of 5/2 holes per dot. The
results of G�T � measurements for the two samples are
shown in Figure 44 by solid and broken lines, respectively.
For both samples, best fits again give x � 0�5, with T0 =
1176 K for sample A and T0 = 581 K for sample B. The
latter is close to the value found for the corresponding state
(QD3) in the MOSFET structure (see Table III). More-
over, the actual values of G�T � for sample B match the
temperature dependence of conductance maximum QD3.
These results provide strong support for the assertion that
the observed conductance oscillations do originate from
hopping of holes through the discrete energy levels of the
first excited state.

6.2. Crossover from Efros-Shklovskii to Mott
Variable-Range Hopping

It should be remarked that the ES form for G�T � does
not necessarily result from intersite correlations. It only

Table III. Fitting parameters for the variable-range-hopping conduction
through the charge-tunable quantum dots in the field-effect transistor.

Conductance maximum x T0 (K) " (nm)

QD6 0�49±0�11 565±58 15�4±1�6
QD5 0�49±0�14 395±48 21�4±3�1
QD4 0�51±0�14 405±49 21�1±2�2
QD3 0�51±0�10 536±52 16�2±1�5
Sample A 0�50±0�01 1176±36 7�6±0�2
Sample B 0�51±0�01 581±37 15�0±0�9
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requires a density of states having the appropriate depen-
dence on energy in the vicinity of the Fermi level.153 In
this section, we demonstrate that the hopping conductance
of an array of QDs may be enhanced substantially and
show crossover from ES VRH to Mott VRH with decreas-
ing temperature, by putting the dot layer in proximity with
a metal plane. The results provide strong evidence for the
dominant role played by long-range Coulomb interaction
between the charges of distant dots in electronic transport
in dense ensembles of QDs.
The large spatial scale of intersite correlations allows

one to examine the role of Coulomb interaction experi-
mentally by making use of intentionally-introduced screen-
ing. If one places a metal plane parallel to the conductive
channel at a distance d, the interaction may be described
by including images of the real charges in the screening
electrode. If the separation of initial and final states in a
hop is small compared with the distance between a charge
and its image �= 2d�, the screening electrode makes lit-
tle difference and the interaction remains monopolar. At
large distances, however, a charge and its image behave
as a dipole and interactions fall off more rapidly with dis-
tance. The general expression for the interaction potential
is Ref. [154]

U�r�= e2

4�
r
0

(
1
r
− 1√

r2+4d2

)
(25)

Thus, distance d plays the role of a screening length.
This means that, at low temperatures, when the hop-
ping distance becomes longer than about 2d, initial and
final states become electrostatically independent and one
should observe breakdown of ES VRH and crossover to
a Mott regime with x = 1/3 in two dimensions. One
would expect the screened conductance to be larger than
that in the unscreened regime. However, Entin-Wohlman
and Ovadyahu155 found a reduction of hopping conduc-
tivity and transition to a simply activated law in screened
InxOy film. Similar behaviour was obtained by Adkins
and Astrakharchik in experiments with ultrathin bismuth
films.156 The explantion put forward was that in those sys-
tems the screened hopping was to nearest neighbours with
the observed activation energy simply a characteristic dis-
order energy. Only Van Keuls et al.157 have reported the
observation of a universal crossover from ES to Mott hop-
ping, driven by variation of temperature, magnetic field
and electron density in GaAs/AlGaAs MSFETs.
It should be pointed out that, in the Mott regime of a

screened system the effective (constant) density of states
is not that which would be present in the absence of
interaction. It is only the low-energy interactions, those
corresponding to long distances, that are screened, and
they are the interactions responsible for suppression of the
density of states at low energies, close to EF. At higher
energies, the density of states still falls off similarly to
the unscreened ES situation. Thus, the constant density

of states at low energies when there is screening is not
equal to some background density of states but is given
by the ES density of states at the energy corresponding to
charges separated by the effective screening length (∼2d).
The density of states at low energies with screening thus
depends only on d and the local relative permittivity. One
obtains154

g�0�= ��4�
r
0/e2d� (26)

where � is a numerical constant estimated in unpublished
calculations by Mogilyanskii and Raikh as � ≈ 0�1 (see
Ref. [154]).
Here we present results of low-temperature conductance

studies in two types of samples. The samples of the first
type (to be referred to as “screened samples”) have a pla-
nar metallic gate close to the dot layer. (The distance
between the channel of QDs and the gate is d = 35 nm.)
Samples of the second type (reference or unscreened struc-
tures) contain no gate electrode. The top oxide layer is
present in both cases, however. In all structures the holes
on the dots are supplied by boron impurities. The tem-
perature dependence of the conductance G�T � of screened
and unscreened samples is shown in Figure 45 as Arhenius
plots. In contrast with the experiments,155�156 the low tem-
perature conductance of the screened QD systems is found
to be larger than that of unscreened samples except for the
N = 1/2 sample where G�T � does not change significantly
with screening (in the range of temperature studied).
To analyze the characteristic behavior of G�T �, we

examine the temperature dependence of the reduced acti-
vation energy w�T �= d lnG/d lnT .158 For an exponential
hopping dependence of G, w�T �= x�T0/T �x and

log10w�T �= A−x log10 T � A= x log10 T0+ log10 x
(27)
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slopes of the solid lines yield the hopping exponents x, and the charac-
teristic hopping temperature T0 is found from the y intercepts. The fitting
parameters of all the curves are listed in Table IV.

Thus a plot of log10w�T � against log10 T yields the values
of the exponent x from the slope and of the characteristic
temperature T0 from the y intercept A: T0 = �10A/x�1/x.
Figure 46 contains w�T � data obtained by numerical dif-
ferentiation of the G�T � curves. Linear regression was
used to determine the best slopes x and the best intercepts
A for both high and low temperature intervals (solid lines
in Fig. 46).
The fitting results are summarized in Table IV. In

unscreened samples with N > 1/2, the slope of the w plots
yields x ≈ 0�5, consistent with ES VRH over the whole
temperature range. Screened samples with N > 1/2, how-
ever, exhibit a crossover from ES VRH at high tempera-
tures to Mott VRH, with x ≈ 1/3, at low. As explained
above we expect this to occur when the optimum hop dis-
tance, Ropt, becomes greater than the screening length.

Table IV. Fitting parameters for the variable-range hopping conduction
through the quantum dots in screened and unscreened regimes.

Data at T > Tcross Data at T < Tcross

T0 = TES T0 = TM Tcross
N Screened x (K) x (K) (K)

1/2 No 0.38 4�8×104

1/2 Yes 0.35 5�4×104

3/2 No 0.52 1260
3/2 Yes 0.53 1392 0.33 4�3×104 6.5
5/2 No 0.54 900
5/2 Yes 0.52 890 0.32 1�0×104 6.7
13/2 No 0.52 1044
13/2 Yes 0.54 1072 0.35 2�6×104 8.7

We return to the N = 1/2 results. Here, screening only
produces a very small reduction in x from 0.38 to 0.35
and no crossover is seen. The absence of ES VRH for this
sample can be understood as follows. At N � 1, most of
the dots contain neither holes nor nearby impurities and
are neutral. A dot is charged only when it contains a car-
rier (hole) supplied by the rare impurities. Since a dis-
placed hole leaves behind the neutral state, the correlation
between initial and final sites in most of hops becomes
unimportant, relevant energies are dominated by disorder
and one observes Mott conduction. In fact, one should
remember that not all transitions are from singly charged
sites to neutral sites so correlation energies are not entirely
absent. This is probably why the hopping exponent in the
N = 1/2 sample is slightly larger than 1/3 predicted for
the “pure” Mott hopping.
An interesting feature of our results is the form of the

transition as seen in the temperature dependence of w
shown in Figure 46. First, the transition is extraordinarily
sharp. If it simply resulted from a situation in which two
different processes were present with the transition occur-
ring as one becomes more dominant than the other, then
one would expect it to be much more spread out. Second,
with larger values of N , we see an actual discontinuity
of w at the transition. There is a certain resemblance to
second-(3/2) and first-order (N = 5/2 and 13/2) thermody-
namic phase transitions. One wonders whether there may
not be a cooperative aspect to the transition from the Mott
to the ES regime as correlation energies become greater.
A possible explanation of such cooperative behavior at low
temperatures can be formation of a 2D Vigner crystal.
An important observation is that the crossover, when

w is discontinuous, is characterized by a drop of w at
Tcross corresponding to reduction of the hopping activa-
tion energy as a result of the screening. This behavior is
reported for the first time and is a direct evidence for the
suppression of long-range correlations between initial and
final hole sites on the dots.

6.3. Universal Prefactor in Unscreened Regime of
Variable-Range Hopping

Notice that the data obtained in the previous section imply
a temperature-independent prefactor G0. Figure 47 shows
the conductance in units of e2/h, the quantum of conduc-
tance, of unscreened samples with different dot occupation
N plottted versus T −1/2; the symbols are the experi-
mental points and the broken lines are the least-squares
fits to the T −1/2 ES dependence. Here we also plot the
amplitude of conductance maxima taken from Figure 44.
An impressive feature is that all the curves extrapolate
to the same prefactor G0 � e2/h. This is more evident
when G�T � is plotted against the dimensionless parame-
ter �TES/T �

1/2 (see inset of Fig. 9). In this plot, the data
collapse onto a single universal curve with intersept G0 =
�1�05±0�05�e2/h. This observation is similar to that found
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The inset shows the same data plotted versus �TES/T �

1/2.

for the two dimensional impurity hopping conductance in
both ES and Mott unscreened regimes in Si MOSFET’s159

and in delta-doped GaAs/AlGaAs heterostructures.160 Uni-
versality of the prefactor signals against the conventional
phonon-assisted hopping mechansim where the prefactor
would depend on material parameters such as the localiza-
tion length. To resolve this descrepancy it was suggested
by Kozub, Baranovskii, and Shlimak161 that the phonon-
less hopping is assisted by electron–electron interaction.
According to this model the current-carrying single elec-
tron moves via quantum resonant tunneling between local-
ized states brought into resonance by a time dependent
random Coulomb potential created by fast electron transi-
tions in their environment. The dependence of the fluctua-
tion amplitude of energies of hopping sites on temperature
gives rise to the temperature dependence of conductance.
If the universal prefactor does result from interaction, its

universality would be destroyed in the presence of screen-
ing. The ratio G�T �/�e2/h� is plotted against �TM/T �

1/3 in
Figure 48 for data from screened samples at temperatures
below Tcross. In contrast to the unscreened regime, the data
do not collapse onto a single curve.

6.4. Spin Effects in Hopping Magnetoresistance

The localized states of holes in the Ge QD are charac-
terized by the angular momentum J and its projection Jz
on the growth direction z. This projection can be con-
sidered as an analog of electron spin for hole states. In
this section, we describe how the hole spin can affect
magnetoresistance in the hopping regime of hole transport
through arrays of Ge QDs. The idea of this experiment
is based on the results of recent theoretical calculations
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Fig. 48. Plots of the conductance G�T � versus �TM/T �
1/3 for screened

samples at T < Tcross.

which have demonstrated that probability of interdot tun-
neling processes with spin-flip for the hole states in 10-nm
sized Ge QDs is two orders of magnitude smaller than
that with spin conservation.162 For simplicity, we will con-
sider only the ground hole state with the maximum occu-
pation N = 2 disregarding excited states due to the large
(∼50–70 meV) energy-level separation and neglect the
intradot Coulomb correlations. When a magnetic field is
applied, all hole spins in the system become polarized. For
the average dot filling factor N < 1 and N > 1 the hop-
ping of holes between QDs occurs with spin conservation
(Fig. 49, top and bottom panels). When N ≈ 1, the hop-
ping transition is accompanied by the spin-flip process

Ge Si Ge Si Ge Si Ge Si Ge Si Ge

N < 1

N = 1

N > 1

Fig. 49. The schematic sketch of the valence band profile along the
layer of Ge/Si quantum dots and the interdot hole transitions (arrows
denote hole spin orientation) in the presence of magnetic field at various
dot filling factors N .
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Fig. 50. Experimental magnetoresistance of a Ge/Si MOSFET as a
function of gate voltage in different magnetic fields. The field varies from
0.5 T to 4.5 T with an increment of 0.5 T. Data were taken at T = 4�2 K.

(Fig. 49, middle panel) which has a much lower proba-
bility. The suppression of hopping process by a magnetic
field gives rise to a positive magneoresistance (MR) result-
ing in a resonant increasing of the hopping MR at N ≈ 1
due to spin correlations.
This prediction was checked for a Ge/Si metal-oxide-

semiconductor field-effect transistor containing remotely
doped Ge dots in a buried active channel.163 The average
filling factor of the QD array was varied by the gate poten-
tial Vg down to N = 0. Experimental results are shown in
Figure 50. The MR peak emerging in a magnetic field and
superimposed on the positive magnetoresistance is really
observed at Vg � 4 V. We suppose that the positive back-
ground is due to the wave function shrinkage effect while
the MR peak is related to the spin correlations described
above.
Summarizing this section, we have described a set of

experiments in which we have studied hopping transport
in field-effect structures containing from 3× 107 to 109

quantum dots. We demonstrate that below ∼100 K this
system is able to show conductance oscillations associ-
ated with filling of the dots by successive single holes.
From the temperature dependence of conductance maxima,
we identify the conduction mechanism as variable-range
hopping in a density of states determined by Coulomb
interaction between the dots. In samples with screening,
we observe a crossover from Efros-Shklovskii VRH with
ln� ∝ T −1/2 to Mott VRH with ln� ∝ T −1/3 as tempera-
ture is reduced. The data in the ES regime collapses onto a
universal curve with a prefactor G0 � e2/h, while all traces
in the screened regime do not show the universal behavior.
The results demonstrates the important role of the long-
range interdot Coulomb interaction and spin correlations in

the dense ensembles of quantum dots and they raise inter-
esting issues relating to the mechanisms of the hopping
processes.

7. OPTICAL PROPERTIES

7.1. Spatially Indirect Excitons

A fundamental feature of staggered QDs is the spatial sep-
aration of electrons and holes resulting in formation of
spatially indirect excitons,164�165�68 whose intriguing prop-
erties are still poorly understood. In particular, little is
known about the influence of Coulomb interactions on the-
excitonic properties of charged quantum dots.
In this section, we describe electron-filling modula-

tionabsorption spectroscopy (EFA) used to study effect
of dot charging on the interband transitions in Ge/Si
SAQDs.123�124�166�167 This kind of spectroscopy has been
also used to study photoluminescence168 and reflectance169

properties of charged InAs and InxGa1−xAs QDs. In the
present experiments, Ge dots (15 nm in diameter) are
embedded into a n+–p–p+ Si diode, in which the number
of holes in the QDs can be finely tuned by an external
applied bias. When a state is occupied by a hole, no inter-
band transition from this state is possible (Fig. 51). When
the hole is evacuated from the level, the interband tran-
sition is allowed. Modulating the holes in and out of the
state by applying an ac bias voltage therefore induces cor-
responding changes in the infrared absorption. Thus the
absorption signal measured under different bias conditions
reflects directly properties of excitons at charged quantum
dots.

n+–Si p–Si p+–Si

Ge dot

Ub = 0

Ub > 0

EC

EV
EF

EFp

EFn

h

e

E0

H0

H1

Fig. 51. Schematic of the band diagram of the sample under unbiased
and reverse biased conditions.
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Fig. 52. (a) Capacitance–voltage characteristic measured at T = 300 K
with a modulation amplitude 10 mV and a modulation frequency
100 kHz. (b) Integrated absorption strength of the H0−E0 transition
and its energetic position as a function of bias voltage Ub.

Infrared absorption measurements were performed in
normal-incidence geometry on mesa diodes at room tem-
perature. Unmodulated light from a globar source illumi-
nated the front side of the diode. The transmitted light then
passed through the monochromator and was detected by a
Ge photodiode. Differential absorption was measured by
applying a reverse bias modulated between a low level UL

and a high level UH.
The 100 kHz capacitance–voltage characteristic mea-

sured at 300 K is shown in Figure 52(a) and illustrates
the charge state of the sample investigated. To determine
the position of the QD layer we used the approximate
relation L = 
0
r/C, where 
r is the relative permittivity.
For C ≈ 20 nF/cm2, the result is L = 0�5 �m which is
in agreement with the nominal position of the Ge layer.
The dots are charged with holes at zero bias. The holes
begin to escape at UB > 0�5 V and the dots become totally
depleted at UB > 8�5 V (Fig. 52(a)). In the discussion that
follows, we modulate the bias voltage between UL = 0 V
and UB = 2–10 V. All measured EFA signals were normal-
ized to the source spectrum so that any spectral response
not associated with the modulated part of the sample is
eliminated from the results. This approach is appropriate
for the case of weakly absorbing samples.
Figure 53 shows the EFA signal measured at different

values of the bias UB. Below the energy gap of Si, at
energies ≈760–770 meV, an absorption maximum with a
Gaussian line shape and a broadening of ≈50–70 meV
is observed and interpreted as indirect excitonic transi-
tion between the hole ground state �H0� in the Ge dots
and the electron ground state �E0� confined in Si near
the heterojunction.124�123�166�167 A similar peak at ≈730–
750 meV has been observed in photocurrent spectra of a
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Fig. 53. (a) Room-temperature electron-filling absorption spectra at dif-
ferent reverse bias. (b) Expanded view of the spectra at low bias.

Ge/Si heterostructure with quantum dots of similar size.37

The broadening of the interband transition is mainly due to
the dispersion of the carrier confinement energies of dots
with different sizes.
An additional fine structure at ≈850 meV is assigned

to the transition between the hole excited state �H1� and
the electron excited state �E1�. The separation of the two
hole states in the Ge dot is ≈70–80 meV.91�151 The energy
difference between the H0−E0 and H1−E1 transitions
is ≈90 meV. This implies that the separation of the two
electron states, ≈10–20 meV, is much less than that for
holes. A probable reason is that the holes are localized in
a small dot, while the electrons are more spread out.
At higher energies, the absorption gradually increases

due to excitations to extended states in the conduction
band of Si and Ge, superimposed on the several absorp-
tion bumps, which are tentatively attributed to transitions
between highly excited states in the dots or in the wetting
layer. To make a careful analysis of the absorption edges,
one should take into account the energy dependence of
absorption coefficient for spatially indirect transition from
a confined state to a delocalized band. Since a theoretical
treatment of such a dependence is a formidable task, we
will not make this analysis in the present work.
The assignment of the peak near 750 meV to the H0–E0

transition is supported by analysis of the integrated absorp-
tion Ia as a function of UB (Fig. 52(b)). (Ia is obtained by
calculating the areas under Gaussians fitted to the absorp-
tion peaks). In our geometry

Ia = he2nef /2m0
0c�1+√

r� (28)

where ne is the density of electrons in the highest valence
band state of the Ge dots, f is the oscillator strength and
c is the speed of light. Since Ia ∝ ne, the Ia −Ub curve
illustrates the change in the charge state of the dots. At
Ub > 8�5 V, the integrated absorption does not depend
on the voltage. Below 8.5 V, the EFA intensity weakens
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Fig. 54. Effect of optical pumping on the EFA spectra at different pump
intensities. The modulation bias amplitude is fixed at Ub = 9 V.

indicating a decrease in the number of modulated electrons
in the valence band of the dots, in agreement with the CV
measurements.
To obtain further evidence to support the proposed

origin of the EFA peak, we have studied the effect of addi-
tional interband optical excitation of the sample by a tung-
sten halogen lamp with a bandpass filter as source. The
absorption spectra obtained at a fixed modulation voltage
(UB = 9 V) and at different pump excitation densities are
depicted in Figure 54. When the sample is illuminated,
nonequilibrium electrons and holes are photogenerated.
The holes are captured by the dots while the electrons are
accumulated near the dots forming the indirect excitons. At
high pump intensities, the hole and electron ground states
become fully occupied and the Pauli exclusion principle
forbids the H0−E0 transition. One can see in Figure 54
that the experimental EFA signal is strongly suppressed by
the optical pumping.
The integrated absorption at UB > 8�5 V can be used to

determine the oscillator strength per dot. For the H0−E0
transition, the density of absorbers is twice the dot den-
sity. (The maximum occupation of the ground state is 2).
From the measured value Ia � 1�4×10−5 eV we find f =
0�5. This value is more than twenty times less than that
obtained for direct excitons in InAs/GaAs QDs (10.9).170

Such a difference is not unreasonable since the difference
between the two types of QDs is large. Similar conclu-
sions were reached in Ref. [171] from analysis of the PL
time decay of type-II GaSb/GaAs SAQDs. Large values
of the oscillator strength and the exciton binding energy
for type-II quantum dots with finite offsets was predicted
by Rorison.172 They are explained by two aspects of the
system. The first is the localization of one of the particles
which allows the other particle of the exciton to corre-
late more strongly with it. The second is leakage of the

0.0 0.5 1.0 1.5 2.0

760

765

770

775

780

785

E
ne

rg
y 

(m
eV

)

Number of holes per dot

Fig. 55. Ground-state transition energy as a function of the hole occu-
pation per dot. The data were taken at different bias in the dark (solid
squares), and at different pump intensities at fixed bias voltage (Ub = 9 V,
open symbols).

wave-functions into the barrier regions allowing greater
overlap of electron and hole wave functions.
One of the results is that the H0–E0 transition shows

a substantial stepwise blueshift of about 11 meV with
decreasing reverse bias (Fig. 52(c)). A qualitatively sim-
ilar effect is seen with increasing the pump excitation
density at fixed UB (Fig. 54). This result differs drasti-
cally from what has been observed for direct excitons,
in which case charging leads to a redshift of the exci-
tonic transition.168�170 It can bee seen in Figure 52(c) that
the transition energy begins to increase when holes are
injected into the originally empty QDs. From the oscilla-
tor strength obtained above and the measured integrated
absorption we calculate the number of holes per dot, Nh, at
different biases in the dark and at different pump intensi-
ties. The energetic position of the indirect excitonic transi-
tion is shown in Figure 55 as a function of Nh. It should be
noted that the transition energy increases sharply when the
first hole enters the ground state and then is approximately
insensitive to further increase in the hole concentration.
When a H0–E0 exciton is created in a positively

charged dot, an exciton–hole complex is formed consisting
of two holes in the dot and an electron confined near the
dot. There are two additional contributions to the energy of
the exciton–hole complex as compared to e–h excitation in
a neutral dot.170 The first is a positive Coulomb energy due
to correlation between the two holes in the dot, Ehh, and
the second is a negative contribution from the Coulomb
attraction between the excited electron in the nearby sili-
con and the second hole on the dot, Eeh. Here we neglect
the exchange interaction between the two holes since they
have antiparallel spin orientation.173 For direct excitons,
the electron–hole interaction dominates and the resulting
shift �Eh−ex =Ehh−Eeh is negative.

170 Hence the expected
reduction of the overlap factor for type-II excitons as com-
pared with type-I systems yields a smaller magnitude of
the electron–hole interaction energy Eeh. As a result, the
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energy of the exciton–hole interaction referenced to a neu-
tral exciton energy can be positive. Taking the experimen-
tally observed shift of 11 meV and Ehh = 36 meV (see
Section 4.1), the exciton binding energy is determined to
be Eeh = 25 meV. Note that this value is consistent with
theoretical simulation (Section 3.4).
As can be seen from Figure 55, optical pumping affects

the transition energy more strongly than the bias voltage.
This stems from the fact that illumination creates both
holes and electrons while the field effect only induces
holes in the dots. Under illumination we have two inter-
acting excitons in the dot: the first is generated by the
pump illumination, the second is excited by the infrared
probing light. As compared to a single exciton, the transi-
tion energy now increases by �Eex−ex = Eee+Ehh −2Eeh,
where Eee is the energy of repulsive interaction between
two electrons confined near the dot. For �Eex−ex = 20 meV,
Ehh = 36 meV, and Eeh = 25 meV, we obtain a surpris-
ing results Eee = 34 meV. It is quite improbable that Eee

could be so close to Ehh in a system where the hole states
are more strongly localized that the electron states. This
problem has been resolved by making self-consistent cal-
culations of the expected electronic structure (Section 3.4).
The confining potentials for electron and hole along the

vertical z axis in the structure and the carrier wave func-
tions are given in Figure 56(a). Figure 56(b) shows the
isosurfaces of the electron and hole wave functions. Note
that the electron is localized near the dot apex, where the
strain is maximum. The electron–hole overlap is calculated
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Fig. 56. The confining potentials and the wave functions for electron
and heavy hole along the principle axis of symmetry in the dot (a). Iso-
surface plots of the electron and hole states (b).
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Fig. 57. Isosurface plots of the electron and hole states for a exciton–
exciton complex.

to be 15%. If we take an electron–hole overlap of 80%
for type-I InAs/GaAs SAQDs174 and an oscillator strength
of 10.9 as observed also for InAs/GaAs,170 we expect for
the dots with an electron–hole overlap of 15%, an oscilla-
tor strength of about 0.38, in a reasonable agreement with
experiment (0.5).
The electron–hole interaction energy is calculated to be

31 meV, in a reasonable agreement with the exciton bind-
ing energy found experimentally (25 meV). The blueshift
of the excitonic transition for the exciton–hole complex
as compared to a single exciton is determined to be
9.7 meV that agrees with the experimental value 11 meV
(Fig. 55).
The calculations were extended to examine the structure

of the exciton–exciton complex. In Figure 57 we depict the
the wave functions for two excitons in the dot. It would
be worth mentioning that the two electrons in the exciton–
exciton complex are spatially separated. Electron–electron
repulsion causes the second electron to localize below the
dot base. As a result, the e–e interaction energy turns out
to be only 19 meV, i.e., about two times less than the
energy of the h–h interaction.

7.2. Stark Effect in Ge/SiOx/Si Quantum Dots

QDs display many effects known from atomic physics.
One of such exciting phenomena is the red-shift of the
optical transition induced by an electric field [so called,
the quantum-confined Stark effect (QCSE)]. Recent
theoretical175–178 and experimental studies179–182 reported
for type-I InAs/GaAs and InGaAs/GaAs QDs, wherein
the narrow-gap dot material presents a potential well for
both electron and hole, demonstrated that the Stark shift
can provide very useful information on the polarity of
intra- and interdot electron–hole alignment and the vertical
separation.
The change of the potential energy of a dipole with a

moment p in an electric field F is given by U = −pF.
For the electron–hole system, p = e��rh�− �re��, where
�re�h� is the mean electron (hole) position. In type-II QDs,
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only one of the charge carriers is confined inside the dot
whereas another carrier resides outside the dot. In con-
tradistinction with the case of type-I QDs, one can expect
that in such a system the Stark effect should be extremely
large because of the permanent spatial separation of elec-
tron and hole and the presence of the built-in electron–hole
dipole.178 To date, most work in the field of QCSE has
concentrated on InAs/GaAs QDs, and little is known about
Stark effect in excitonic transitions of type-II QDs.
As it has been already mentioned, Ge/Si(001) quan-

tum dots exhibit a type-II band lineup. When an electron–
hole pair is photoexcited, the hole is captured into the
quantum well of the Ge dot and creates an attractive
Coulomb potential resulting in a binding of an electron in
Si (Fig. 58(a)) at the Si/Ge interfaces and forming the spa-
tially indirect excitons. In this section, we will describe
the effect of an electric field on the interband transitions
in Ge/Si(001) quantum dots studied by photocurrent (PC)
spectroscopy.183�184

For controlled tuning of the electric field, the Ge QDs
are embedded in the intrinsic region of an Si p–i–n diode
(p+ region uppermost), allowing fields up to 90 kV/cm
to be applied parallel to the growth direction z (applying
a reverse bias to a p–i–n structure results in an electric
field pointing from n+ substrate to p+ surface). The band
profile under reverse bias condition is shown schematically
in Figure 58(b).
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Fig. 58. (a) Band structure of the type-II Si/Ge/Si heterostructure along
the growth direction through the center of the Ge dot. (b) Schematic band
diagram of the p–i–n diode under reverse bias.

Ge/Si QDs, more suitable for the Stark spectroscopy,
must meet the following conditions. First, the size of the
dots in all three dimensions should be small enough to pro-
vide actual zero-dimensional density of hole states. In this
case, the localization of hole in all three dimensions of
Ge dot allows the electron in the Si conduction band to
correlate more strongly with it, resulting in increase of the
exciton binding energy as compared with quantum-well
systems. Second, the electron and hole must be well sep-
arated to ensure the large dipole moment, so that the dots
should be rather steep. However, conventional Ge/Si(001)
self-assembled QDs, grown by Stranskii-Krastanov growth
techniques, are always flat, i.e., they have an aspect ratio
(height divided by base length) much less than unity.37

To fabricate steep Ge islands with small lateral size, we
grow the Ge dots on a Si(001) substrate covered with
an ultrathin SiOx film. This approach uses Volmer-Weber
growth mode and allows to form Ge nanoclusters which
exhibit an epitaxial relationship with the underlying sil-
icon substrate and reside on bare Si region similar to
the case of Stranskii-Krastanov islands.39 The Ge islands
have a hemispherical shape with a base diameter of 5�8±
0�5 nm and a height of about 3–4 nm. The apex of the
dots is oriented along the growth direction. The areal den-
sity of the islands was approximately 1�8× 1012 cm−2

(Fig. 59).
Figure 60 shows photocurrent spectra as a function of

reverse bias. There is an apparent PC peak below the sil-
icon interband absorption edge (1126 meV) which is not
seen in the reference sample without Ge SAQDs (violet
line in Fig. 60). Since intra-valence band hole transitions in
Ge/Si QDs occur at much lower energies (70–400 meV),
the observed photocurrent maximum cannot be attributed
to transition between hole states in the dots. At low bias,
this peak has a symmetric line shape and is believed to
come from the indirect excitonic transition between the
hole ground state in the small Ge dots and the electron
ground state confined in Si near the heterojunctions. The
electron–hole pairs created by interband absorption ther-
mally escape from the dots and give rise to the measured
photocurrent. As the reverse bias increases, the current
maximum becomes wider and splits into two peaks which
are changed with the applied voltage in a different way.
The position of the low-energy peak Tlow is practically
unchanged with the bias while the high-energy component
Thigh apparently shifts to higher energies.
To explain splitting and the blueshift of the high-energy

transition, one needs to consider the electronic structure of
excitons in type-II Ge/Si QDs. The modeling of the con-
fined electron and hole states68�124 predicts that holes are
concentrated at the bottom of the dot, and the electrons
are localized in Si both on top and below the Ge island.
This is the result of strain distribution and Coulomb forces
around the dot. It follows from the second-order pertur-
bation theory that the field dependence of the transition
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Fig. 59. Plan-view (top) and cross-section (bottom) transmission elec-
tron microscopy images of a dot sample. The Ge islands appear in dark
contrast.
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Fig. 60. Photocurrent spectra as a function of applied reverse bias
(lines). The short circuit photoresponse from a reference Si photodiode
containing no Ge SAQDs is shown by violet line.

energy can be described by

E�F �= E�0�− eF ��zh�−�ze��−�F 2 (29)

where e = −	e	 is the electron charge, E�0� is the transi-
tion energy at zero field, �ze�h� is the mean electron (hole)
position along the growth direction (along the nanocrys-
tal axis), and � is the polarizability of the electron–
hole system.176 In a system possessing an extremely large
nonzero dipole moment, the second order term in Eq. (29),
quadratic in the applied field, may be less important than
a linear one, and the transition energy is expected to vary
linearly with the field.
In frame of this conception, the high-energy maximum

Thigh has been interpreted as a transition between the hole
ground state in the Ge dot and the electron state con-
fined in Si near the dot apex. The low-energy peak Tlow
is assigned to the transition between the same hole state
and the electron state localized in Si near the dot base (see
Fig. 58(b)). Obviously, the term eF ��zh�− �ze�� is nega-
tive for the first case and positive for the second one since
the electron–hole dipoles formed as a result of the Thigh
and Tlow transitions have the opposite directions.
One can check this explanation by extracting the values

of electron–hole and electron–electron separation from the
observed Stark shift. Keeping in mind that the observed
PC maximum is a superposition of the two peaks, the
maximum was decomposed into two Gaussians. A self-
consistent one-dimensional simulation of our p–i–n device
was performed to calculate the electric field near the apex
and the base of the dots. It was found that electric field
is uniform across the intrinsic region and can be well
described by F = �U + Vbi�/W , where U is the applied
reverse bias, Vbi is the built-in potential (∼1 V), and
W = 0�8 �m is the intrinsic region width. Independent
capacitance–voltage measurements carried out on the sam-
ples demonstrated that W does remain unchanged within
the bias range studied and equal to the nominal growth
width. This supports our calculation.
The field dependence of the transition energies are plot-

ted in Figure 61. As expected for a system with built-in
dipole moments, the Stark shift for both transitions appears
to be linear. Moreover, due to the linear behavior, the type-
II Ge/Si QDs exhibit a QCSE of approximately one order-
of-magnitude stronger than type-I InGaAs/GaAs QDs of
similar height.181 From a fit to the data using the Eq. (29),
the electron–hole distance was found to be �5�1± 0�2�
nm for the electron near the dot apex (top electron) and
−(0�8±0�3) nm for the electron near the dot base (bottom
electron). It is worth to note that separation of these two
electrons (≈6 nm) is somewhat larger than the mean dot
height (≈4 nm), which is quite reasonable for QDs with a
staggered band line-up and provides clear support for the
explanation. The small separation of the bottom electron
and the hole agrees with the fact that hole is localized
towards the base of the dots.
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Fig. 61. Transition energies as a function of electric field. The solid
lines are theoretical fits to the experimental data.

The magnitude of the exciton polarizability is found to
be �/e2 = �120±100� nm2/eV for the Thigh transition and
�/e2 = �1�5± 60� nm2/eV for the Tlow transition. Large
error in determination of � is consistent with that the lin-
ear Stark shift is certainly dominated by the extremely
large permanent exciton dipole. Since the polarizability
is determined predominantly by the height of the quan-
tum dots,176 and the spatial extent of the electrons wave
functions above and below Ge QDs is close to the dot
vertical dimension,124 the polarizability values turn out to
be comparable with those found for III–V dots of similar
height.176�177

We now focus attention on the variation of the PC inten-
sity with electric field. The amplitude of the low-energy
signal increases with increasing F at low fields and sat-
urates at bias U ≥ 5 V. The intensity of the high-energy
maximum continues to increase even at highest F . The
increasing value of both PC peaks at low F can be related
to an increasing rate of carrier escape with F . By apply-
ing a reverse bias, the electric field pushes the top electron
towards the hole in the dot and pulls the bottom elec-
tron out from the hole. As a consequence, the electron–
hole overlap and the corresponding absorption strength are
increased for the Thigh transition and reduced for the Tlow
transition. At highest F , no bound state can further exist
for the bottom electron and the Tlow transition transforms
into a smooth PC tail on the low-energy side of the Thigh
signal.

7.3. Negative Interband Photoconductivity

An important consequence of the spatial separation of
electrons around Ge SAQDs caused by Coulomb repulsion
between them is that a dot is able to trap more electrons
than there are holes85 (see, also, Section 3.4). Consider an
n-type Si layer with embedded Ge dots. The dark conduc-
tivity of the system is determined by the mobile electrons
thermally activated from the donor impurity states to the
conduction band. Under interband optical excitation, hole

will start to accumulate in Ge SAQDs, charging them posi-
tively. As a result, potential wells for electrons will arise at
both sides of the Si/Ge interface. The electrons (both equi-
librium and photoexcited) become localized in the wells.
The localization of equilibrium electrons will decrease the
concentration of mobile carriers and reduce the conductiv-
ity of the system. Thus, the observation of negative pho-
toconducivity in Ge/Si QDs can provide a proof of the
spatial separation of electrons.
To verify experimentally this prediction, we investigated

the conductivity and the concentration of free carriers in
different Ge/Si SAQDs structures under illumination.185�186

Each sample consists of ten layers of Ge islands sepa-
rated by 30 nm Si spacers. To obtain n- or p-type of the
structure Sb- or B-doping was used, respectively. GaAs
light-emitting diodes (LEDs) with an emission maximum
as a wavelength of 0.9 �m were used as a light source.
The emission density of the LEDs was modulated with
a frequency of 2 kHz. The photocurrent and Hall signal
were measured at the modulation frequency with the lock-
in technique.
The relative change in the conductivity at T = 77 K

of the samples with different Sb concentration as a func-
tion of the illumination power density P is depicted in
Figure 62. Also shown is the photoconductovoty of the
p-type sample and of the sample in which the layer with
Ge QDs has been removed by chemical etching. The
conductivity of the sample containing no dots and of
the p-type Ge/Si structure is traditionally positive. The
QD n-type samples exhibit negative photoresponse in the
range of illumination intensities P = 0–100 mWcm−2.
Figure 63 demonstrates that the negative photoeffect is
actually accompanied by decreasing the mobile carrier
concentration, while the mobility is only weakly affected
by illumination. At P > 100 mWcm−2, a transition from
negative to positive PC is observed. With increasing exci-
ton occupation the self-consistent potential wells become
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Fig. 62. Dependence of the relative photoconductivity on the interband
illumination intensity in n-type Si samples with Ge SAQDs at different
Sb concentration in epitaxial layer (NSb = �2�5–8�× 1016 cm−3), in the
sample containing no dots and in the p-type QD Ge/Si structure.
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Fig. 63. Dependence of the relative photoconductivity, concentration of
free electrons and mobility on the interband illumination intensity in
Ge/n-Si heterostructure with NSb = 3×1016 cm−3.

completely filled with electrons and free photogenerated
carriers give rise to increasing photoconductivity.
It should be emphasized that the observed negative pho-

toeffect is an inherent feature of the type-II quantum dots,
because in type-I systems both electrons and holes are con-
fined in the potential wells created by the conduction and
valence band discontinuities independently of the charge
state of SAQDs.

7.4. Depolarization Shift of the Interlevel Resonance

The motion of the electrons in a two-dimensional (2D)
system is quantized in the direction z perpendicular to
the plane of the layer. The z-polarized infrared radiation
can be absorbed by a 2D system causing interband tran-
sitions in the well. It is well known that in a dense 2D
plasma, the collective intersubband charge-density exci-
tations (resonant screening) leads to a density-dependent
blueshift of the interband resonance away from its single-
particle position187 and to a resonance line narrowing for a
nonparabolic system.188 The renormalization of the inter-
subband absorption energy due to collective interactions
is called the “depolarization” shift.189 In contrast to 2D
systems, additional lateral confinement of carriers in quan-
tum dots makes in-plane polarized transitions between the
discrete levels possible.91�190

Direct examination of the role of collective coupling
for the in-plane polarized interlevel absorption of a stack
of ten dense arrays of Ge/Si SAQDs has been made in
Ref. [91]. The dots have a lateral size of about 15 nm
and a density 3× 1011 cm−2 in each layer. The interlevel
absorption studied corresponds to the transition from the
hole ground state to the first excited state in the dot; the
states are associated with in-plane confinement and belong
to the same z-subband. To provide holes for intersublevel
absorption, the sample was illuminated by a halogen lamp
that allowed to change the average dot occupation number
from zero to about 2.5 holes per dot. The photoinduced
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Fig. 64. The photoinduced absorption at various pump intensities.
A constant offset is added for clarity. The sample consists of 10 layers
of Ge dots separated by 30 nm Si barriers and was grown on a (001)
oriented phosphorus doped Si substrate. The Sb-doping level of the Si
barriers was 1016 cm−3. The areal density of the dots in each layer is
3×1011 cm−2.
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Fig. 66. The intersublevel resonance position as a function P 3/2, where
P is the pump intensity.

infrared absorption spectra measured at different pump
intensities P are reported in Figure 64. An absorption peak
is found at 70–90 meV, in agreement with the result of tun-
neling spectroscopy of interlevel spacing (Section 4). The
free-carrier absorption associated with carriers that are not
trapped in the dots is also observed at high pump inten-
sities as an increasing absorption towards low energy. At
low intensity, the peak is strongly asymmetric that reflects
the nonuniformity of the dot sizes. As the pump inten-
sity increases, the absorption peak shifts to higher energies
and becomes more symmetric, considerably reducing its
linewidth (Fig. 65). All these features are a signature of
the collective phenomena, here realized in a system of lat-
erally confined states. From the magnitude of the absorp-
tion in the collective mode, the oscillator strength has been
determined to be 0.95.91

Because the depolarization field effect is a result of
dipole–dipole interaction between QDs, the energy shift of
the intersublevel absorption should be propotional to P 3/2,
where P is the pump intensity.191 Figure 66 nicely demon-
strates such a dependence. At large optical pump intensity,
the dot-excited state becomes occupied with holes. This
suppresses the depolarization effect and causes the transi-
tion energy to be shifted downward to its single-particle
value.192 Apart from the interesting issues relating to col-
lective excitations of dense arrays of QDs, the depolariza-
tion effect gives rise to possible practical application of
electric modulation in tunable infrared modulators.

8. APPLICATIONS

8.1. Quantum-Dot Metal-Oxide-Semiconductor
Field-Effect Transistor

Despite the large effort to study the fundamental prop-
erties of Ge/Si SAQDs, there were only several attempts of
incorporating Ge/Si islands as an active element of semi-
conductor devices, such as infrared photodetectors37�193–196

and light-emitting197�198 and resonant-tunneling diodes.199

Little work has been done on the Ge/Si quantum-dot field-
effect transistors (QDFETs), which use the quantum trans-
port through discrete energy states in zero-dimensional
systems.200 To date, most work in the field of QDFETs
has concentrated on InAs/GaAs SAQDs201–203 and on Si-
based quantum dots defined by very sophisticated pat-
terning techniques, such as electron-beam litography in
combination with anisotropic etching204–207 and selective
oxidation,208�209 or by tunable gates.210

In order to rise the operation temperature of QDFETs
up to 300 K, the size of QDs has to be smaller than 10 nm.
This requirement considerably restrict the possibility of
using the lithographic processes for fabricating ultrasmall
QDs. In this way, the Ge/Si SAQDs, which are formed
without additional lithography procedure and whose diam-
eter can be achieved as small as ∼10 nm,37 are more
advantageous and, hence, more relevant for application in
QDFETs operating at room temperature.
In Section 6.1, we demonstrated QDFET with an array

of 3×107 Ge SAQDs embedded into the active channel of
a Si MOSFET.150 The device was fabricated on a silicon-
on-insulator (SOI) substrate prepared by the separation by
implanted oxygen (SIMOX) technique. The channel was
a Si island of 100 �m width and 108 �m length which
rests on SiO2. The area of the MOSFET gate was 100×
100 �m2. However, clear drain current oscillations with a
gate voltage due to successive loading of holes into the
dots were not observed. The reasons are
(i) the leakage current across the Si layer leading to the
large background varying with the voltage, and
(ii) significant broadening of the current peaks due to sta-
tistical fluctuations of the dot sizes and Coulomb poten-
tials from randomly distributed charged QDs in the dot
ensemble.

These drawbacks are eliminated in this section. First, the
drain current leakage is reduced by reducing the super-
ficial Si layer thickness in a SOI substrate. Second, the
average Ge SAQDs lateral dimensions are decreased from
15 nm to 10 nm. The stronger carrier confinement in the
dots provides the larger energy-level separation, resulting
in a clearer resolution of the current peaks at high tem-
peratures. Third, inhomogeneous broadening due to long-
range dot size variations and random Coulomb potentials
are reduced by decreasing the QDFET size from 100 �m
to ∼1 �m and by using the gate recess configuration.202

The starting material was a SOI (001) substrate with a
150-nm-thick p-type superficial Si film. First, the SOI
layer was thinned to 47 nm by thermal oxidation. After
removing SiO2, a 20-nm-thick undoped Si buffer layer was
grown at 800 �C by molecular beam epitaxy. Next, the Ge
self-assembled dots were grown at 300 �C with nominal
thickness of 8 monolayers and subsequently embedded in
20-nm of Si. The average in-plane diameter and height
of the Ge dots are 10 and 1 nm, respectively. The den-
sity of the dots is 4× 1011 cm−2. To supply holes on
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Fig. 67. Atomic force microscopy image and schematic cross section
of the transistor channel. The source, drain, and the gate are labeled by
S, D, and G, respectively.

the dots, a boron delta-doping (6× 1012 cm−2) Si layer
inserted 20 nm above the Ge layer was grown. A 30-nm-
thick undoped Si cap layer was then deposited at 500 �C.
The channel was patterned by photolithography to form a
Si island of 4-�m length and 1-�m width, etched down
to the underlying SiO2. Source and drain electrodes were
made using Al evaporation and annealing at 450 �C in a
N2 atmosphere. A plasma-enhanced chemical-vapor depo-
sition silicon dioxide of 60 nm thickness was deposited
as the gate insulator and, finally, a Al gate of 4 �m
width and 1 �m length was formed. The amount of oxide
charge, estimated from the admittance measurements, was
about 3× 1010 cm−2. Figure 67 shows an atomic force
microscopy picture of the transistor. Several samples with
designed channel widths W ranging from 2 to 1 �m are
fabricated. The sidewall depletion width is determined to
be 0.9 �m from measurements of drain current versus W
at zero gate voltage. Assuming a uniform density of 4000
dots per �m2 these different gate areas of the samples con-
tain number of active dots from 400 to 4000.
The hole concentration in the boron �-doping Si layer is

sufficient to fill, after spatial transfer, all hole bound states
in the Ge islands and to populate two-dimensional states in
the Ge wetting layer. As a result, the channel conductance
at zero gate voltage is found to show the non-activated
behavior and depend only slightly on temperature.
The drain current (Id) as a function of the gate voltage

(Vg) was measured at different temperatures with the drain
voltage fixed at 5 mV. Figure 68 shows the typical Id−Vg
characteristics of the 1 �m gate QD transistor. When a
positive bias is applied to the gate the channel is depleted
and current flow between the source and drain contacts
is suppressed. Above the threshold voltage Vth � 4 V the
deep hole states in the dots come into resonance with the
Fermi energy and the current starts to oscillate (Fig. 69).
At room temperature, the current bump is clearly

observable around 6 V. As the temperature decreases, four
well-pronounced equidistant peaks with a gate voltage sep-
aration �Vg � 1�1 V appear after onset of the conduc-
tance. The number and relative position of the peaks are
well reproducible at different cold cycles and in different
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Fig. 68. Gate voltage dependence of drain current at various
temperatures.

samples of similar sizes. It follows from previous inves-
tigations of the field effect, admittance and capacitance
spectra in Si modulation-doped structures with similar Ge
quantum dots150�151�211 that when we leave the continuum
and enter the tunneling regime with increasing gate bias,
we would expect four equidistant current peaks (tunneling
through fourfold-degenerate excited state in the Ge QDs),
then a voltage (energy) gap and two additional peaks corre-
sponding to transport through the twofold-degenerate hole
ground state (Fig. 69). Since we only observe four maxima
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Fig. 69. Top of the valence band of the transistor for positive gate bias.
The SOI substrate is not shown. The holes reside in the Ge dots. When
the Fermi level is aligned with the quantum levels in the Ge dots at a
certain gate voltage, holes will flow through that quantum level in the
plane of Ge SAQDs.
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right above the transport continuum, we relate these peaks
to hole transport through the excited state of Ge/Si SAQDs.
A very similar fine-structure consistent with four max-
ima, separated by the Coulomb blockade energy EC, has
been observed recently by Schmidt et al.203 in InAs/GaAs
QDFETs. We may ask why we do not observe current
maxima associated with a filling of the hole ground state.
Due to confinement and Coulomb effect, the energy dif-
ference between loading the second hole into the ground
state and the first hole into the excited state of the 8 ML
Ge SAQDs is approximately 200 meV (Ref. [151]). Sim-
ple estimates using the gate modulation coefficient (deter-
mined below) yield that filling of the ground state is
expected to be at Vg ≈ 16 V, but, in this region, large leak-
age current through the gate insulator prevents measure-
ments of Id–Vg characteristics.
The charging energy (EC) of the dots can be determined

by using EC = #e�Vg, where the gate modulation coeffi-
cient # relates the gate voltage to the hole energy inside
the dots. This coefficient can be calculated from the tem-
perature dependence of the full width at half maximum
(FWHM) of the current peaks, which, for a single dot
showing Coulomb blockade oscillations, should be broad-
ening with T as 3�5kBT /�#e� (Ref. [212]). By measur-
ing the FWHM averaged over four peaks as a function of
temperature (Fig. 70), we obtain # = �3�9± 0�3�× 10−2,
with a residual FWHM V0 = 0�49± 0�05 V which is a
result of statistical fluctuations in the dot ensemble. On the
basis of this calculation, the estimated charging energy is
43±3 meV.
In Figure 70, we depict the temperature dependence of

the current maxima. A clear thermally enhanced trans-
port through the dots with the activation energy Ea = 21±
3 meV is evident. Several scenarios could lead to such
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Fig. 70. Temperature dependence of the current maxima at different
gate voltages. Inset: Temperature dependence of the average FWHM of
four current maxima with a linear fit to the data. To obtain the FWHM of
each peak, the observed current oscillations were decomposed into four
Gaussians.

a behavior, such as thermal activation of holes from the
dots over the barriers213 and hole tunneling between neigh-
boring dots.214 In a latter case, the activation energy is a
typical disorder energy in the system, which comes from
dispersion of the dot sizes and potential fluctuations caused
by random distribution of the charged dots and interface
states. Because the experimental value Ea is the same for
all peaks (i.e., it does not depend on the effective bar-
rier height), the conduction mechanism is attributed to the
nearest-neighbor hopping of holes between the dots. With
scanning the gate voltage, the Fermi level moves across the
zero-dimensional density of states. The maximum current
occurs when the given hole level in the dots is half-filled
because this maximizes the product of possible initial and
final states for tunneling process and avoids increasing the
energy of the system due to appearance of extra charge in
a final dot.
The disorder energy, Ed, in ensemble of the dots can be

found from residual FWHM using Ed = #eV0. For V0 =
0�49±0�05 V and #= �3�9±0�3�×10−2, one obtain Ed =
19± 3 meV, which is consistent with the experimental
value of activation energy observed in Figure 70.

8.2. Quantum Dot Photodetectors for Near- and
Midinfrared Operation

The potential advantages of the quantum dots infrared pho-
todetectors (QDIPs) as compared with two-dimensional
systems are as follows:
• Increased sensitivity to normally incident radiation as
a result of breaking of the polarization selection rules,
so eliminating the need for reflectors, gratings, or
optocouplers.
• Expected large photoelectric gain associated with a
reduced capture probability of photoexcited carriers due to
suppression of electron–phonon scattering.
• Small thermal generation rate, resulted from zero-
dimensional character of the electronic spectrum that ren-
ders a much improved signal-to-noise ratio.
• Possibility of the narrow-band detection due to discrete-
ness of the density of states.

Furthermore, because the spatial extent of the electron or
carrier wavefunction in QDs is in the order of 10 nm or
more, the dipole matrix element for the intersubband tran-
sitions can be large,215 which is not the case for natural
deep impurities in semiconductors.
To provide a high performance of QDIPs, the photosen-

sitive region of detectors should consist of a dense array
of QDs.4 In this way, self-assembled Ge/Si QDs are more
advantageous and hence more relevant for application in
QDIPs, in which the surface density of the dots can be
achieved as high as 1011–1012 cm−2 by choosing appropri-
ate growth conditions.
The concept of QDIP using intersubband transitions was

proposed and analyzed theoretically by Ryzhii et al.216–221
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Fig. 71. Schematic of the Ge/Si phototransistor structure.

The “classical” Ge/Si QDIP with vertical photocurrent
consists of a p+–p–p+ silicon structure with a planar array
of Ge quantum dots embedded in the undoped or lightly
doped with boron p-Si region. The array of QDs plays
the role of the QDIP active element (the phototransistor
base). Heavily doped p+-Si regions serve as the emit-
ter and collector of the phototransistor. An example of
practical realization of Ge/Si phototransistor is shown in
Figure 71.196

The holes captured in the Ge QDs form a sheet
charge distributed in the QD plane. The current flowing
from emitter to collector is limited by this space charge
(Fig. 72). The holes, photoexcited from the ground
to excited states in the dots (bound-to-bound transi-
tions (Fig. 72(a)) or from bound to continuum states
(Fig. 72(b)), change the space charge density in the base
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Fig. 72. Valence band profile in Ge/Si QDIPs with and without illumi-
nation with light.
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Fig. 73. Schematic layout of waveguide near-infrared photodetector on
a silicon-on-insulator substrate.

region, that results in an increase of the emitter current.
In a former case, a change of the charge density in the
QD plane is originated from the different wavefunction
extent of holes in different quantum states. Additional con-
tributions to the photocurrent could arise from appearance
of the mobile photoholes in the Si valence band due to
thermal ionization of the excited state or due to direct
photoexcitation.
Apart from the conventional p+–p–p+ structure of

Ge/Si QD phototransistors, p+–p–n+ and n+–p–n+ struc-
tures were used for mid-37 and near-infrared36�193�222–224

detection. Also lateral Ge/Si QDIPs with detectivity of
1× 1011 cm

√
Hz/W at T = 20 K have been realized and

demonstrated their high potential for efficient normal inci-
dence mid-infrared operation.225–227

The integration of Si/Ge heterostructures on a Si chip
and their compatibility with Si-based electronic circuitry
presents a high potential for designing low-cost opto-
electronic modules. An example of near infrared Ge/Si
p–i–n photodetector operating at the 1.3 �m and 1.55 �m
telecommunication wavelengths is shown in Figure 73.
To increase the interaction length between the light and
the QD layers and to provide the intrachip interconnec-
tions, a vertical stacking of 36 layers of coherent Ge nano-
islands was inserted into a waveguide obtained with a
SOI structure. The sample was processed into ridge wave-
guide. Devices with lengths going from L= 0�1 to 5 mm
were fabricated.224 The room-temperature quantum effi-
ciency of a 4 mm device versus reverse bias Ub is shown
in Figure 74. The light is coupled through the edge of
the detector. The maximum external quantum efficiency
achieved is 16% for $= 1�55 �m and 21% for $= 1�3 �m
at L > 3 mm and Ub > 3 V.
To the best of our knowledge, the first observation

of midinfrared photoconductivity in Ge QDs has been
reported by Yakimov et al. in 1999.37 The QDIP under
investigation was a p+–p–n+ silicon diode embedded with
a single layer of pyramidal Ge SAQDs. The average size of
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Fig. 74. Quantum efficiency of a 4 mm waveguide photodetector as a
function of reverse bias.

the dot base length is 15 nm, the height is ≈1.5 nm. As the
heterostructure was growth at low temperature (Ge layer
was grown at 300 �C and covered with Si at 500 �C), the
segregation and interdiffusion effects are negligible and Ge
islands contain no silicon atoms. The large areal density
of Ge QDs (3× 1011 cm−3) realized the high absorption
coefficient.
Figure 75 depicts normal incidence PC spectral response

as a function of reverse bias taken at T = 300 K. There are
apparent two PC peaks below the silicon interband absorp-
tion edge which are changed with the applied voltage in a
different way. Because the energy difference between the
ground state of the dot and the Si valence band edge is
about 400 meV,41 the midinfrared absorption around 3 �m
is attributed to the intraband hole bound-to-continuum
transition (Fig. 76, top panel). The variation of bias volt-
age moves the Fermi level with respect to the quantum
levels in the dot layer. The hole population in the dots
decreases as the reverse bias Ub increases. At Ub = 1�4 V,
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Fig. 75. Photocurrent spectra of Ge/Si p+–p–n+ QDIP as a function of
reverse bias. The curves have been offset vertically for clarity.
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Fig. 76. Schematic diagram of photoresponse mechanisms of Ge/Si p+–
p–n+ QDIP at low and at large reverse bias.

holes escape from the dots and 3 �m transition becomes
forbidden. The 1.7 �m PC maximum shows the opposite
behavior with applied voltage. Its appearance is accompa-
nied by suppression of the 3 �m absorption. This observa-
tion establishes direct correlation between two absorptions
and favors the near-infrared (1.7 �m) feature is caused by
an interband indirect electronic transition from the high-
est valence band states in the Ge QDs and the Si con-
duction band (Fig. 76, bottom panel). In this case, the
transition energy should be equal to the energy differ-
ence between the silicon band gap (1.126 eV at 293 K)
and the hole ground energy of the dot (≈400 meV, esti-
mated as the cut on energy of the 3 �m absorption). By
these values the transition energy is determined to be about
730 meV (1.7 �m wavelength), which is consistent with
the experimental result (Fig. 75). The device described
can be implemented to form two-color detector arrays
whose spectral response can be finely tuned by an exter-
nal bias.
The photoresponse of Ge/Si p+–p–p+ QDIPs associ-

ated with bound-to-continuum intraband transitions was
studied by Miesner et al.,194�226 Rappaport et al.,195 and
Boucaud et al.228 The active region of samples consists of
10 periods of Ge dots separated by Si spacers. The mean
dot base length is 75–100 nm and the average dot height
is around 7 nm.194�195�228 Typical dot areal density ranges
between 109 and 4�4× 109 cm−2. A p-type doping with
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boron was used to provide from 2 (Ref. [195]) to about a
100 (Ref. [194]) holes per each Ge dot.
For samples with Ge layer grown at 500 �C, the PC

maximum was observed at ∼324 meV with peak respon-
sivity of 5 mA/W at 20 K.226 Because the sample was
grown at a sufficiently high substrate temperature, GeSi
alloy with a lower valence band offset is formed in the
Ge regions. This is why the bound-to-continuum tran-
sition energy (300 meV) is smaller than that observed
in Figure 75 (400 meV) when the islands consist of
pure Ge. The lateral structures with similar QDs have
responsivity up to 10 mA/W and detectivity of about
1× 1011 cm Hz1/2/W at T = 20 K in normal incidence
geometry.227 When the growth temperature is raised up to
600 �C, the photocurrent maximum is further red-shifted
downward to ≈100 meV.195�228 These results demonstrate
that by appropriate choice of the growth conditions it is
possible to fabricate the effective Ge/Si QDIPs with desir-
able spectral range of photoresponse.
The photoconductivity associated with bound-to bound

transitions was studied in a vertical p+–p–p+ phototran-
sistor with eight Ge QD layers grown on a p+-Si substrate
(Fig. 71).196 The thickness of Si regions separated the Ge
layers was 110 nm. Within a 10-nm distance from each
Ge layer, Si was �-doped with boron at a layer concen-
tration of 6× 1011 cm−2, which ensured nearly complete
filling of the islands ground state with holes (two holes
of opposite spins per each dot). An effective differential
resistivity of the device at zero voltage of about 106 ! cm
is larger than that of intrinsic silicon, 2�3×105 ! cm. This
means that
(i) there is band bending around the dot layers due to for-
mation of depletion regions and
(ii) carrier are localized deep in the dots, not participating
in conduction.

In this situation, the dominant transport mechanism at suf-
ficiently large voltage is associated with hole injection
from the contact into the Si valence band. The temperature
dependence of the dark current within the ohmic region
of the current–voltage characteristic was found to follow
the activation law with an activation energy close to the
energy difference between the ground state of the dots and
the Si valence band edge (400 meV).196

Figure 77 shows the room-temperature photoresponse
spectra measured at normal incident radiation conditions.
The curves exhibit two distinct peaks: the low-energy peak
corresponds to the hole transition from the ground to
the first excited state, and the high-energy peak is appar-
ently associated with the transition to the second excited
state. Combining responsivity data with the results of noise
and dark current measurements, and using the following
expressions
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Fig. 77. Photoconductive spectral response of the Ge/Si QDIP at var-
ious bias voltages. The layer of Ge SAQDs was grown at a substrate
temperature of Ts = 300 �C. The dots have a typical base length of 15 nm
and height of 1.5 nm. The density of the dot is 3×1011 cm−2. The mea-
surements have been made at 300 K. E0 is the energy of the hole ground
state in the dots, and E1 and E2 are the energies of the first and second
excited states of holes, respectively.

where in is the dark current noise, Id is the dark current,
g is the photoelectroc gain, �f is the bandwidth, h� is
the photon energy, # is the responsive quantum efficiency,
the maximum values of photoelectric gain and detector
quantum efficiency were determined to be 4 and 0.1%,
respectively.

9. CONCLUDING REMARKS

The development of new products and services depends
strongly on the capability to exploit in a more advanced
manner the physical and chemical properties of materi-
als. Thus, the investigation of matter and its control at the
nanoscale presents a huge potential that can benefit society
as a whole and in the framework of sustainable develop-
ment. It could also greatly increase industrial competitive-
ness. Research and technology on the nanolevel represent
a great intellectual and scientific challenge where the tradi-
tional scientific disciplines converge. New interdisciplinary
approaches and curricula need to be developed. To suc-
ceed in the challenging world of nanotechnology, research
excellence is, however, not enough. Successful strategies
for companies and research organizations include indus-
trial innovation and attention to environmental and social
issues. New manufacturing tools and appropriate standards
are also required as well as a novel entrepreneurial attitude.
Considerable resources and efforts are required to meet
these challenges in appositive and timely manner. Further-
more, a careful analysis of the current situation has to
be carried out. Future initiatives will greatly benefit from
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coordination and focusing in order to achieve the maxi-
mum impact on industry, to improve the quality of life
of the citizens and enable the new discoveries to generate
wealth and employment.
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B 49, 2923 (1994).

189. T. Ando, A. B. Fowler, and F. Stern, Rev. Mod. Phys. 54, 437
(1982).

190. C. Metzner and G. H. Döhler, Phys. Rev. B 60, 11005 (1999).
191. A. O. Govorov and A. V. Chaplik, Sov. Phys. JETP 72, 1037

(1991).
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