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Wave functions andg factor of holes in GeÕSi quantum dots
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We investigate theoretically the Zeeman effect on the hole states in quantum dots. In frame of tight-binding
approach, we propose a method of calculating theg factor for localized states. The principal values of theg
factor for the ground hole state in the self-assembled Ge/Si quantum dot are calculated. We find the strong
g-factor anisotropy—the componentsgxx , gyy are one order smaller than thegzz component,gzz512.28,
gxx50.69, gyy51.59. The efficiency of the developed method is demonstrated by calculating of the size
dependence ofg factor and by establishment of the connection with two-dimensional case. Theg-factor
anisotropy increases with the size of the quantum dot. The analysis of the wave function structure shows that
theg factor and its size dependence are mainly controlled by the contribution of the state withJz56

3
2 , where

Jz is the angular momentum projection on the growth direction of the quantum dot.

DOI: 10.1103/PhysRevB.67.205301 PACS number~s!: 73.21.2b, 71.70.Ej, 71.70.Fk
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I. INTRODUCTION

The functionality of modern semiconductor devices rel
on the control of electronic charge. However, the carriers
not only carry charge, but also spin. Spin transport has
major advantage compared to charge transport: quantum
herence can be maintained on much larger time scales.
eral device applications such as spin transistors, s
memory, and also the spin quantum computer have been
posed to utilize spin dependent effects in semiconduct
Semiconductor quantum dots~QD!, in which carriers occupy
discrete energy states, show various spin-related phenom
including spin degeneracy, exchange interaction, spin blo
ade, and Kondo physics~for review see Refs. 1–5!. Various
promising schemes exploiting the spin of carriers in QD ha
been proposed recently.6–8

For successive manipulation of spin in QD, it is necess
to know such fundamental spin properties as the effectivg
factor, which defines the Zeeman splitting and the sp
relaxation time. On one hand these magnitudes characte
the material properties of the physical object, on the ot
hand they characterize the individual electron state. The
fective g factor is directly connected with structure of th
wave function of the localized carrier in QD. Here, we de
onstrate this connection by considering the hole locali
state in the self-assembled Si/Ge quantum dot. From fun
mental point of view, this system attracts much interest,
cause here both effects of strong quantum confinement
strains define the energy spectrum and they are respon
for the modification of theg factor.

In bulk semiconductors, the motion of electrons and ho
in the presence of the spin-orbit interaction gives rise to
g factor, which is significantly modified compared to the fr
particle g factor (g'2). As one advances from bulk sem
conductors to low-dimensional structures, quantum confi
ment effects come into play that leads to further strong mo
fication of the g factor. For electrons, this results in th
enhancement9 and high anisotropy of the Zeeman splitting10

A comprehensive theory based on thek•p method was de-
veloped to predict a behavior of the electrong factor in low-
dimensional systems including quantum wells,11 wires, and
0163-1829/2003/67~20!/205301~10!/$20.00 67 2053
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dots.12 Some theoretical results were published for the holg
factor in quantum wells.13–15 Recently, the attempt to calcu
late the holeg factor in quantum dots was made.16 To the
best of the author’s knowledge, there is no detailed theory
the Zeeman effect for holes confined in quantum dots.

Let us start with qualitative analysis of the principal di
tinctions between two-dimensional~2D! case of quantum
wells and zero-dimensional~0D! case of quantum dots
which are responsible for theg-factor renormalization. A
very wide quantum well can be considered as a bulk se
conductor. When the interaction with magnetic field is sm
in comparison to the quantization energies~or strain-induced
splittings in the case of strained semiconductors!, the explicit
form of the 838 k•p Hamiltonian allows one to obtain im
mediately theg-factor components for the hole subband
For heavy holegi56k, g'50, and for light holegi52k,
g'54k, wheregi , g' are the components of the effectiv
g-factor tensor for magnetic field parallel and perpendicu
to the growth axisz of quantum well, respectively andk is
the Luttinger parameter~here, the small valence-band param
eterq is neglected!. For narrower quantum wells, the unce
tainty in component of wave vectorkz increases that leads t
the modification of the light holeg factor owing to the mix-
ing with the split-off valence-band states and with t
conduction-band states.17 The Lande factor of heavy hole
remains unchanged, because the heavy hole states do no
with the nearest subband states. In the case of ultrana
quantum wells, the holeg factor is defined by the paramete
of the barrier layer.

In the case of quantum dots, a new modification of t
hole g factor occurs owing to the spatial confinement n
only in the growth directionz, but also in lateral directions
x,y. This leads to the uncertainty inkx , ky , and as a result
to the strong mixing between the light and heavy ho
states.17 The light and heavy hole mixing is left out of ac
count in the theoretical consideration of 2D system, beca
the states at the bottom of the subband (kx ,ky50) are con-
sidered usually. In the self-assembled quantum dots form
on the base of strained heterostructures, the signific
change of the holeg factor is caused by the inhomogenei
of strains in QD. If one compares the quantum well and
©2003 The American Physical Society01-1
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quantum dot both with growth direction@100#, then one
finds in the quantum dot, nonzero strains«xy , «xz , «yz ,
which lead to the mixing between the light and heavy h
states. In quantum well, these strains are absent. So, in
case of quantum dots, the spatial confinement in all th
dimensions and the strain inhomogeneity induce the mix
between electronic bands and as a result lead to a new m
fication of the holeg factor.

Here we have developed a method of calculating the h
g factor in quantum dots, using the tight-binding approa
This method allows us to calculate theg factor in quantum
dots with a different shape and a different confinement
tential. It is applicable to size of wave function comparab
with interatomic distance. This method can be applied als
the electron states in quantum dots.

This paper is organized as follows. In Sec. II, we pres
the general approach for calculation of theg factor of carriers
in QD. In Sec. III, we propose an estimation of theg factor
for holes localized in Ge/Si quantum dots and make a co
parison with results of numerical calculations. Then we c
culate the size dependence ofg factor and establish the rela
tionship between the contribution of the state withJz56 3

2

and theg-factor value. The probabilities of the Zeeman tra
sitions for different directions of external magnetic field a
investigated. In Sec. IV, we explain obtained results
means of the simplified model of noninteracting subband

II. GENERAL APPROACH

The application of magnetic fieldH produces the Zeema
interaction energy of the particle, having effective magne
momentM , which can be written asĤ52M̂•H. The mag-
netic moment is connected with the angular momentumJ in
the following way:M5g0mBJ, wheremB is the Bohr mag-
neton andg0 is the Lande factor, which is equal to 2 for th
particle with only spin magnetism and 1 for the particle w
only orbital magnetism.

Let us introduce the magnetic moment of a hole,MQD ,
measured in units of the Bohr magneton.

MQD5L12S,

whereL is the orbital angular momentum andS is the spin of
the particle. If one needs to calculateg factor of confined
electron in QD, one can use the same expression for m
netic moment differing only in sign. The Zeeman Ham
tonian for localized carrier in the quantum dot is written a

ĤQD~H!52mBHM̂ QD52mB~ L̂12Ŝ!H.

Even in quantum dots, grown along high-symmetry dire
tion @001#, the symmetry is not higher thanC2v because of
the nonequivalence of directions@110# and @ 1̄10#. Hence,
the energy levels are twofold degenerate in the absenc
magnetic field, and their sublevels constitute the Kram
doublets. For the pair of Kramers-conjugate states, the Z
man contribution to the effective Hamiltonian is written a

1

2
mBŝ igi j H j ,
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where ŝ i ( i 5x,y,z) are the Pauli matrices, and for low
symmetry systems the real tensorgi j is characterized by nine
linearly independent components.18 For a hole~or an elec-
tron! in the quantum dot with symmetry not lower thanC2v ,
one can choose the system of coordinates (x,y,z), wheregi j
is characterized by three principal valuesgxx , gyy , gzz.

When the Zeeman interaction is small in comparison
the confinement energy, theg factor depends only on the
magnetic-field direction and can be evaluated by means
the first-order perturbation theory:

ugu52A^cun•M̂QDuc&21u^cun•M̂QDuc* &u2, ~1!

wherec,c* are the Kramers-conjugate states andn is the
unit vector in the magnetic-field direction. Thus, to calcula
matrix elements of the operatorM̂QD , one has to determine
the wave functionsc,c* for the hole~or electron! state in
the quantum dot. We assume that the magnetic field does
change significantly the wave function of hole in QD, a
use for calculation of matrix elements the eigenstates of
nonperturbed Hamiltonian. We solved the eigenvalue pr
lem for the hole states in QD recently.16 We usedsp3 tight-
binding ~TB! approach, including interactions between ne
est neighbors only.19,20The set of atomic orbitals$s, px , py ,
pz% for each atom was taken, and state vector length w
equal to the product of number of atoms and number
orbitals per atom. Following Chadi,21 the spin-orbit interac-
tion was added to the Hamiltonian. Strain effects22 were in-
corporated into the Hamiltonian in two ways: as changes
interatomic matrix elements20,23 and as the strain-induce
mixing of orbitals centered on the one atom.16 In order to
find the wave function, we applied the free relaxati
technique.24 The component of calculated state vectorcaN
represents the amplitude of the probability to find hole~or
electron! on thea orbital of the atom numberN, where the
index a runs over the set$s,px ,py ,pz%.

Since the state vectors were found as linear combinat
of atomic orbitals, one should determine the expression
M̂QD in the representation of atomic orbitals. The angu
momentum of electron on thea orbital of the atom number
N can be written as

L̂ i5
1

\
ei jk p̂j r̂ k ,

whereei jk is the unit antisymmetric tensor; indicesi , j ,k run

over the set$x,y,z%. The momentum operatorp̂5mṙ̂ can be
expressed via the coordinate operatorr̂ as

p̂5
im

\
~Ĥ0r̂2 r̂ Ĥ0!,

wherem is the mass of the free electronĤ0 is the Hamil-
tonian without spin-orbit interaction. This equation can
deduced from the time differentiation rules for operators25

Then the angular momentum operator can be written as
1-2
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L̂ i5
im

\2
ei jk r̂ j Ĥ0r̂ k .

Hence, the magnetic momentum of hole on thea orbital can
be written as

~M̂QD! i5L̂ i12Ŝi .

But one cannot use this equation directly for calculation
the matrix elementŝcuM̂QDuc&,^cuM̂QDuc* &, because the
state vectorsc,c* are calculated in TB approach and th
coordinate operatorr̂ has no physical sense in this approac
We replace it by coordinate operatorR̂ of the atom with
considered orbital:

L̂ i5
im

\2
ei jkR̂j Ĥ0R̂k . ~2!

By replacing r̂→R̂, we lose some part of the angular m
mentum. The remaining part@Eq. ~2!# is connected with the
envelope function. It is the orbital momentum caused by
calization of the carrier in the quantum dot. To obtain t
total magnetic momentumMQD , one should take into ac
count the internal orbital momentum corresponding to
atomic orbital. Also, one should remember about renorm
ization of g052 caused by the interaction of electron
bands.

The hole state in the quantum dot is built mainly fro
states of the valence band, namely, heavy hole band~HH!
and the light hole band~LH!. But the nearest electroni
bands also make contribution to the state in quantum
The split-off valence band~SO! and the conduction ban
~CB! are important for the correct magnetic momentum c
culation for hole~or electron! state in QD. TB approach
which we used for solving the eigenvalue problem, takes i
account not only the interaction of the electronic bands n
band gap but also the interaction of the HH states with
higher conduction bands. As we will show further, the co
tribution of the remote bands in the hole state in QD
negligible. The wave function of hole~or electron! can be
presented in the following form:

uc&5ACB~R!uCB&1AHH~R!uHH&

1ALH~R!uLH&1ASO~R!uSO&,

where uCB&, . . . ,uSO& are the Bloch functions, and coeffi
cients ACB , . . . ,ASO can be considered as envelopes a
reflect the contributions of the corresponding bands in
state in QD. Every component of the wave function has
trinsic effective spin and interacts with the magnetic fie
according to Eqs.~3!–~7! in the following paragraphs.

For the degenerate valence-band states (G8 band!, the
Zeeman interaction can be written in the following form:

Ĥ~H!52mB@k~ ĴH!1q~ Ĵx
3Hx1 Ĵy

3Hy1 Ĵz
3Hz!#, ~3!

whereJ is the hole effective angular momentum (J5 3
2 ), and

k and q are Luttinger parameters. This equation autom
20530
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cally takes into account the internal orbital momentum c
responding to the atomic orbital.

The strains and confinement effects in the quantum
lead to the lifting of the valence-band degeneracy.

It is convenient for states in the HH band to use an eff
tive HH spin or pseudospinShh5 1

2 to describe their sublev
els: as in Ref. 14, we identifyJz52 3

2 with (Shh)z52 1
2 and

Jz5
3
2 with (Shh)z51 1

2 . In terms of the pseudospinShh , the
Zeeman Hamiltonian is written as

Ĥ~H!5mBghh~ŜhhH!. ~3a!

The same one can make for states in the LH band:Jz52 1
2 is

identified with (Slh)z52 1
2 and Jz51 1

2 is identified with
(Slh)z51 1

2 . The Zeeman interaction in the LH band:

Ĥ~H!5mBglh~ŜlhH!. ~4!

From a comparison of Eqs.~3! and ~3a!, one can conclude
that for the heavy hole state, which haveJ5 3

2 and Jz
56 3

2 , the Landeg factor is ghh;6k ~the term with small
parameterq can be neglected!. Equation~3! will be used in
the following.

For the CB and SO states, the Zeeman interaction can
written in terms of the effective spins:Sc , Sso . For states in
the conduction band,

Ĥ~H!5mBgc~ŜcH!, ~5!

and for states in the split-off band,

Ĥ~H!5mBgso~ŜsoH!, ~6!

where gc is the g factor of an electron in the conductio
band,gso is theg factor of a hole in the split-off band, an
operatorsŜc , Ŝso can be expressed via the Pauli matric
ŝx ,ŝy ,ŝz , Ŝi5

1
2 ŝi .

The total energy of the interaction with magnetic fie
including the interaction of the orbital momentumL is writ-
ten as the sum:

Ĥ~H!52mB@k~ ĴH!1q~ Ĵx
3Hx1 Ĵy

3Hy1 Ĵz
3Hz!#

1mBgso~ŜsoH!1mBgc~ŜcH!1mBL̂H, ~7!

where L̂ is given by Eq.~2!. From this equation, one ca
extract the magnetic momentMQD :

~M̂QD! i52kĴi12qĴi
31gso~Ŝso! i1gc~Ŝc! i1L̂ i . ~8!

Substituting Eq.~2! into Eq. ~9!, we finally arrive at the
following main equation:

~M̂QD! i52kĴi12qĴi
31gso~Ŝso! i

1gc~Ŝc! i1
im

\2
ei jkR̂j Ĥ0R̂k . ~9!

Now we can calculate theg factor of a hole~or an electron!
in the quantum dot, utilizing Eqs.~1! and ~9!.
1-3
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III. RESULTS

A. Hole g factor in GeÕSi quantum dots

The Ge quantum dots are usually fabricated in Ge/Si h
eroepitaxial system~lattice mismatch;4%) by Stransky-
Krastanov growth mode after deposition of a few monola
ers. The average sizes of Ge quantum dots in well-kno
experiments are;10–20 nm in lateral direction an
;1 –2 nm in height, and these quantum dots can be vie
as artificial atoms.26 The large (;0.7 eV) valence-band off-
set characteristic of Ge/Si heterojunction leads to an effec
confinement of holes in Ge clusters.26 The experimental re-
sults show that the shape of Ge/Si quantum dot is close to
square pyramid with the heighth, one order smaller than th
length of the base sidel (h/ l;1/10).27 The Ge nanocluste
represents quasi-two-dimensional object with the princi
symmetry axisz, see Fig. 1.

The localized states in the quantum dot are formed ma
from valence-band states, and represent the superpositio

states u 3
2 ,6 3

2 &,u 3
2 ,6 1

2 &,u 1
2 ,6 1

2 & ~the statesuJ,Jz& are the
eigenstates of effective angular momentumJ and its projec-

tion Jz). The statesu 3
2 ,6 3

2 & can be considered as heavy ho

states,u 3
2 ,6 1

2 & can be considered as light hole states, a

u 1
2 ,6 1

2 & can be considered as split-off hole states. The st
distribution in quantum dot in general consists of the co
pression in the plane of the pyramid base and the exten
in the growth directionz. In the bulk uniaxially extended
semiconductor, strains lift the degeneracy of the vale
band, making the heavy hole band, the highest vale
band.28 For this reason, the contribution of the heavy ho
states in the ground state in QD must be predominant.
same conclusion follows from estimation of the quantizat
energies for heavy and light holes. Heavy hole has the m
bigger effective mass and the lower quantization ene
~compared to those for light hole!.

FIG. 1. Geometry of typical Ge/Si~100! quantum dot.
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Let us consider the external magnetic field applied pa
lel to the growth direction,Hiz. The interaction energy is
determined by the projection of the magnetic momentum
the external field direction, i.e., on thez direction. Therefore,
for calculation of the holeg factor, one needs to evaluate th
matrix elements of operatorsĴz , Ĵz

3 , (Ŝso)z , (Ŝc)z , andL̂z .
At first, we demonstrate that one can estimate the hog

factor based only on the results of the wave function exp
sion in the basis uJ,Jz&, i.e., the expansion uc&
5SnAn(R)un& where n runs over the set$u 3

2 ,6 3
2 &,u 3

2 ,
6 1

2 &,u 1
2 ,6 1

2 &% ~the heavy hole states, the light hole stat
and the split-off hole states!. The contribution of CB states is
omitted because of its small value (; 0.5%) according to
our calculations. The results of the wave function expans
for the ground hole state in the quantum dot with sizel
515 nm andh51.5 nm are presented in Table I. The co
tribution of the states withJz56 3

2 ~the heavy hole states! is
about;84% of the ground state. The rest part belongs to
states withJz56 1

2 ~the light and split-off hole states!. From
Table I, one can see that the stateu↑& is formed in general by
the states withJz51 3

2 andJz52 1
2 , and the stateu↓& con-

sists of the states withJz52 3
2 and Jz51 1

2 . The angular
momentum projection of heavy hole part is antiparallel
that of the light and split-off hole parts. This can be e
plained by symmetry considerations. The combination of
states withJz51 3

2 and Jz52 1
2 remains the same unde

symmetry transformation of groupC2v (p rotation!. The part

with Jz56 1
2 reflects the contributions of the statesu 3

2 ,

6 1
2 &, u 1

2 ,6 1
2 &, either of the two is about;8% of the ground

hole state. That is the LH and SO states make the eq
contributions to the ground hole state.

If the ground hole state in the quantum dot was formed
the heavy hole states only, the spin up stateu↑& would cor-
respond toJz51 3

2 and the spin down stateu↓& would cor-
respond toJz52 3

2 . The Zeeman splitting in the magnet
field Hiz would be defined as

E~Hz!52mB^~MQD!z&Hz52mBHzS 2k
3

2
12q

27

8
1^Lz& D ,

~10!

where^(MQD)z&, ^Lz& are averagez components of the mag
netic and orbital momenta respectively, in the stateu↑&. For
estimation, the term with small parameterq is neglected in
Eq. ~10!, uqu50.06 ~Ref. 29!. If one takes into account the
admixture of the light and split-off hole states withJz
56 1

2 , Eq. ~11! turns into the following:
f

TABLE I. Results of wave function expansion in the basisuJ,Jz& for two Zeeman sublevelsu↑&, u↓& of the

ground hole state in Ge quantum dot. The sizes of Ge nanocluster: the heighth51.5 nm, and the length o
the base sidel 515 nm. The contribution of CB states (;0.5%) is omitted.

uJ,Jz& u 3
2 , 3

2 & u 3
2 , 1

2 & u 3
2 ,2 1

2 & u 3
2 ,2 3

2 & u 1
2 , 1

2 & u 1
2 ,2 1

2 &

u↑& 83.67% 2.26% 4.7% 0.08% 1.17% 8.11%
u↓& 0.08% 4.7% 2.26% 83.67% 8.12% 0.67%
1-4
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E~Hz!52mBHz2k~a22d2!
3

2
12mBHz@2k~b22c2!

1gso~e22 f 2!#
1

2
12mBHz^Lz&,

where coefficientsa2, b2, c2, and d2 are probabilities of
finding in the stateu↑& hole with J5 3

2 and Jz5
3
2 , Jz5

1
2 ,

Jz52 1
2 , and Jz52 3

2 correspondingly. The coefficientse2

and f 2 are probabilities of finding hole withJ5 1
2 and Jz

5 1
2 , Jz52 1

2 correspondingly. They all are connected wi
coefficientsAi(R), i P $HH↑, HH↓, LH↑, LH↓, SO↑,
SO↓% in the following way:

a25E AHH↑
2 ~R!dR, b25E ALH↑

2 ~R!dR,

c25E ALH↓
2 ~R!dR, d25E AHH↓

2 ~R!dR,

e25E ASO↑
2 ~R!dR, e25E ASO↓

2 ~R!dR.

For quantum dots with sizesl 515 nm andh51.5 nm,
these probabilities area2'0.84, b2'0.02, c2'0.05, d2

'0, e2'0.01, andf 2'0.08.
If one excludes the term witĥLz& , the estimation of the

hole g factor can be done by means of the following equ
tion:

gzz'6k~a22d2!12k~b22c2!1gso~e22 f 2!. ~11!

The valence-band parameters for bulk Ge and Si are
known. The Luttinger parameterk is known from high pre-
cision experiments~Ref. 29! k523.4160.03, but the mag-
nitude of gso is known with poor accuracy,gso521063
~Ref. 30!. However, theg factor is crucially dependent on th
magnitude ofk and weakly dependent on thegso , and this
fact does not lead to the significant error in calculatio
More significant correction ofg factor can be expected from
difference of parameterk in the strained Ge from its value i
unstrained Ge. Experimental values for the Luttinger para
eters of strained Ge do not exist in the literature. Theref
we have used a nonlinear interpolation scheme31 along with
the concepts of Lawaetz,32 which exactly reproduces the ex
perimental values of the Luttinger parameters of both Si
Ge. Parameterk is mainly dependent onk•p couplings of the
topmost valence band with thes and p antibonding
conduction-band states with energy gapE0 andE08 , respec-
tively. This allows to express thek in the following form:

k5
1

6

Ep

E0
2

1

6

Ep8

E08
1 k̄, ~12!

where

Ep52/mu^XuPxuG28&u
2,

Ep852/mu^XuPyuG158 &u2
20530
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are the principal interband momentum matrix elements. H
uX& is the yz-type wave function of theG258 valence-band
states in the case where spin-orbit coupling is neglected,
k̄ is expressed by two constants (G andH2 in Ref. 32!. The
estimation of fundamental gapE0 in strained Ge following
Van de Walle28 givesE0.1.2 eV. This value is close toE0
obtained for pseudomorfic Ge film by theoretical study
strained Si12xGex alloys, coherently grown on a Si~001!.33

The gapE08 in strained Ge can be found, follow Lawae
by scalingE08 for initial Ge according to

E08~s!5E08~ i !@a~s!/a~ i !#21.92,

where a(s), a( i ) are the lattice constants for strained a
unstrained Ge’s. The momentum matrix elements are
versely proportional to the lattice constants. HenceEp(s)
andEp8(s) are obtained by scaling their values for unstrain
Ge with

d~s!5$111.23@D~s!21#%F a~ i !

a~s!G
2

,

where D(s) is the factor introduced by Van Vechten34 to
account for d electron effects. For unstrained Ge,D( i )
51.25. To determinate theD(s) for strained Ge, we use th
method proposed by Van Vechten and obtain the va
D(s)51.13.

Thus, usingE08(Ge)53.16 eV, Ep(Ge)526.3 eV, and
Ep8(Si)514.4 eV ~Ref. 32!, we have calculated from Eq
~13! the Luttinger parameterk522.75.

Substitutingk522.75 andgso5210 in Eq. ~12!, one
can findugzzu'13 for Ge nanocluster withh51.5 nm andl
515 nm . The numerical calculation of the holeg factor by
means of Eq.~1! with eigenstates obtained in TB approa
gives the valueugzzu512.28. Analogously we have calcu
lated the principal values of theg tensor for magnetic field
lying in the plane of the pyramid base:ugxxu
50.69(Huu@110#), ugyyu51.59 (Huu@ 1̄10#).

The comparison of the obtained valuegzz with the g fac-
tor of heavy hole in the bulk germaniumughhu'6k520.46
shows that the effects of quantum confinement and str
lead to the decrease of the holeg factor. This demonstrate
the suppression of the spin-orbit interaction due to the
mixture of the light and split-off holes states.

To estimate the orbital momentum contribution, we ha
calculated the holeg factor, dropped all terms in Eq.~10!
except the last. In this case, the calculation gives the valu
theg factor, one order smaller than for case of total mom
MQD : ugzzu50.59. So, the holeg factor is mainly deter-
mined by the effective angular momentumJ, but not by the
orbital momentumL .

B. The size dependence of the holeg factor

The holeg factor of the ground state in QD demonstrat
a well pronounced anisotropy:gzz is one order larger than
gxx , gyy . Calculation of the holeg factor for Ge nanocluste
with larger lateral sizel, keeping the nanocluster heighth
constant, shows the stronger anisotropy of theg factor ~see
1-5
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Fig. 2!. For calculating this size dependence, we use
parameterk52.75 for strained Ge. We do not take into a
count the change ofk with size of Ge nanocluster. Ou
simple estimation ofk in dependence on strain shows th
this parameter slightly rise, with nanocluster sizel. So, if this
fact was included into consideration, it would be led to t
stronger anisotropy enhancement with lateral sizel.

The reason of theg-factor anisotropy lies in the similarity

between the ground hole state and the heavy hole stateu 3
2 ,

6 3
2 &, which has the transverse components of theg factor

close to zero.14 The ground hole state becomes closer to
heavy hole state with increasing of the nanocluster lat
size that leads to the anisotropy enhancement. The nume
calculation confirms this assumption: the contribution of
heavy hole state in the ground state in QD goes up w
increasing of the nanocluster sizel ~see Fig. 2!. For example,
when the sizel changes from 15 nm to 30 nm at the heig
h51.5 nm, the contribution of the heavy hole state increa
from 83.7% to 86%. Theg-factor anisotropy becomes stron
ger: ugzzu goes up to 13.53 and transverse components
crease tougxxu50.52, ugyyu51.56.

To establish the effects, which govern the change of

contribution of the states withJz56 3
2 ~the u 3

2 & states! with
nanocluster sizel, we consider how the strains in Ge nan
cluster are changed. We use our previous results of calc
ing the spatial strain distribution in Ge nanocluster and th
environment.22 We trace the biaxial strain«zz2

1
2 («xx1«yy)

in dependence on the nanocluster size. When the la
nanocluster sizel increases withh5 const, the biaxial strain
in the Ge nanocluster increases with the ratiol /h ~see Fig. 3!.
This leads to higher strain splitting between the light a
heavy hole states.28 The admixture of the states withJz

56 1
2 ~the u 1

2 & states! is decreased. Moreover, our resu
allow us to comprise the size dependences of biaxial st

and u 3
2 &-state contribution. It is surprisingly that the depe

dences of these characteristics on the nanocluster sizel are

identical~see Fig. 4!. This means that theu 3
2 &-state contribu-

tion is nearly a linear function of biaxial strain. It is difficu
to explain this result in frame of simple qualitative mod
But it demonstrates that the strain is the main reason de

FIG. 2. Theg factor of ground state in Ge quantum dot as
function of the QD lateral sizel. The Ge nanocluster heighth
51.5 nm.
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mining the change of the contribution ratio between theu 3
2 &

state and theu 1
2 & state in considered case (h5 const andl is

changed!.
The calculation of the holeg factor with increasing of

both sizesl and h, keeping the proportions of the pyrami
constant (h/ l 51/10), gives more higher anisotropy of theg
factor. For example, forl 530 nm andh53 nm, the princi-
pal values of theg tensor are the following:ugzzu517.43,
ugxxu50.12, ugyyu51.06. In this case, the contribution of th
heavy hole state goes up to 90%, just that leads to this h
anisotropy. The strong increasing ofgzz is caused by reduc
ing the part of wave function penetrating in Si region. In th
case, the wave function is located almost only in the
region, and Si does not affect theg-factor value. In the case
of nanocluster withh51.5 nm, the influence of Si environ
ment is stronger.

When proportions of the pyramid (h/ l 51/10) are pre-
served, strains cannot be considered as the main reaso

termining theu 3
2 &-state contribution. The spatial distributio

FIG. 3. Profiles of biaxial strain«zz2
1
2 («xx1«yy) along the

symmetry axisz of a quantum dot at different lateral sizesl of Ge
nanocluster. The region I corresponds to wetting layer and the p
II corresponds to the tip of the pyramid. The maximum value
biaxial strain is reached in wetting layer~point A!.

FIG. 4. Size dependence of maximum value of biaxial strain,
height of pyramidh51.5 nm, the lateral sizel is changed. The
maximum value of biaxial strain~symbolsd) ~point A in Fig. 3!
depends on the size of Ge nanocluster in the same manner a

u 3
2 &-state contribution~symbolsh).
1-6
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of strains and their magnitudes in the quantum dot are
significantly changed with increasing of nanocluster siz
The strain splitting between the light and heavy hole sta
remains the same. In the Discussion, we argue that the re

determining the change ofu 3
2 &-state contribution in this cas

is the confinement energy.
The obtained size dependence of theg factor proves the

correctness of our approach. Indeed, when the lateral sl
increases, the Ge nanocluster transforms into the pseudo
phic strained Ge film. The inhomogeneity of the strain d
tribution disappears, the strains«xy , «xz , «yz are absent. The
uncertainty inkx , ky becomes equal to zero for the state
the bottom of the subband. All these changes suppress
mixing of the heavy hole state with the nearest band sta
And as a result, theg factor of the ground hole state mu
trend toward the heavy holeg factor in strained Ge film,
ghh'6k516.5. But for thin Ge layer~thickness is a few
nanometers!, theg factor of hole state is affected by Si laye
surrounding Ge layer, because the tails of wave function p
etrate into Si layer. Namely, for Ge layer with thicknessh
52.2 nm, thez component ofg tensor is equal tougzzu
513.11. It is obvious thatgzz does not reach the value o
heavy holeg-factor in strained germanium. Moreover, th
value is smaller thanugzzu513.53 for Ge nanocluster withl
530 nm andh51.5 nm. This effect is caused by vanishin
the contribution of orbital momentumL for 2D Ge layer.

C. GeÕSi mixing at the interface

The above given values ofg factor have been obtained fo
Ge nanocluster with atomically sharp Ge/Si interface.
have taken into account the Ge/Si mixing at the interface
real self-assembled quantum dots, and the calculated va
have changed. The Ge/Si mixing is introduced in the cal
lation procedure in the following way: each of atoms in t
crystal lattice is substituted with probability23 for one from
its four neighbors. So, in this manner one can obtain
diffused interface with graded changes of the Ge con
within three monolayers. The calculation with diffused Ge
interface gives the following results: transverse compone
undergo a drastic change, for example, for the Ge nanoc
ter with lateral sizel 515 nm ugxxu decreases from 0.69 t
0.6 andugyyu decreases from 1.59 to 0.33. But the longitu
nal component of theg factor remains unchanged practicall
ugzzu512.37. So, in the case of diffused interface, t
g-factor anisotropy enhances in comparison to the case o
atomically sharp interface. Probably, this is caused by
effective increase of the Ge nanocluster size.

D. Zeeman transitions probabilities

For magnetic fieldHiz, the Zeeman transitions probabi
ity depends on the magnitude of the angular momentum
jection Jz . For the state withJz56 3

2 , the transitions be-
tween Zeeman sublevels are forbidden and for allow
transitions, the conditionDJz561 must be satisfied. The
admixture of the states withJz56 1

2 leads to the weakening
of this prohibition. Therefore, the Zeeman transitions pro
ability becomes higher for nanoclusters with smaller late
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size l. For any chosen directionh of the magnetic field, the
Zeeman energy is determined by the projectionJh of the
angular momentum on the directionh. When the direction of
h is not parallel to principal axis of symmetryz, the states
uJ,Jh& cannot be considered as the heavy, light, and split

hole states. For example, the stateu 3
2 ,6 1

2 & with Jh56 1
2 can-

not be considered as the light hole state. The stateuJ,Jz& is
transformed intouJ,Jh& in the following way:

uJ,Jh&5(
Jz

RJzJh

J ~u,w!uJ,Jz&,

whereu,w are the azimuth and polar angles of the vectoh
in the coordinate system (x,y,z) and the matrix R can be
expressed via standard rotation matrix:RJzJh

J (u,w)

5DJzJh

J (0,2u,2w).35

In the special caseu5p/2, w50, the magnetic field lies
in the plane of the nanocluster base and coincides with
x. Let us consider the heavy hole state withJz5

3
2 , without

any admixture. In the representationuJ,Jz& the vector of this
state can be written in the following form:

uc&5aU32 ,
3

2L 1bU32 ,
1

2L 1cU32 ,2
1

2L 1dU32 ,2
3

2L

5S a

b

c

d

D 5S 1

0

0

0

D ,

where squares of coefficientsa2, b2, c2, andd2 reflect con-
tributions of the states with correspondingJz , a21b21c2

1d251. Under application ofRJzJh

J (p/2,0), the heavy hole

state transforms into superposition of the states withJh
56 3

2 and

Jh56 1
2 :S 1

0

0

0

D →S A1/8

A3/8

A3/8

A1/8

D .

From this equation, it is clear, that the contribution of t
state with Jh51 1

2 is 3
8 of whole state, the state withJh

52 1
2 makes the same part. They contain together 75%.

for magnetic fieldH, lying in the plane of pyramid base, th
contribution of the states withJh56 1

2 becomes higher in
comparison withHiz. Therefore the probability of the Zee
man transitions for in-plane magnetic field is higher. This
also true for the hole state with initial admixture of the sta
with Jz56 1

2 , as for the ground hole state in the consider
Ge quantum dot, where the contribution of the states w
Jz56 1

2 is about 16%. Further, we present some estimat
of the Zeeman transitions probabilities for different dire
tions of the magnetic field. The probability of induced tra
1-7
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NENASHEV, DVURECHENSKII, AND ZINOVIEVA PHYSICAL REVIEW B 67, 205301 ~2003!
sitions between the Zeeman sublevels is determined by
interaction of the magnetic momentum with oscillating m
crowave magnetic fieldH'cos 2pnt (H' is perpendicular to
the external magnetic fieldH) and is proportional to the
square of the matrix elementu^↓um̂'H'u↑&u, wherem' is the
magnetic momentum projection on the direction of mic
wave fieldH' ,36

P↑↓;u^↓um̂'H'u↑&u2.

For external fieldHiz, the microwave magnetic fieldH'

lies in the plane of the nanocluster base and the projectio
magnetic momentumm' is proportional to the principal val
ues ofg tensor:gxx ~the direction@110#) andgyy ~the direc-
tion @ 1̄10#). For microwave fieldH' , which is parallel to
the direction @110#, the probability is proportional to the
square of the principal valuegxx : P↑↓;gxx

2 .
For external fieldH'z, the projection of magnetic mo

mentumm' lies in the plane containing the axisz. For mi-
crowave fieldH' , which is parallel to direction@100#, the
probability is proportional to the square of the princip
valuegzz, P↑↓;gzz

2 .
For quantum dot withgzz512.28, gxx50.69, gyy51.59,

the estimation of induced transitions probability gives t
probability for Hiz approximately two orders smaller tha
for H'z :

P↑↓~H'z!

P↑↓~Hiz!
'100.

If we take into account the decrease of transverse com
nents (gxx50.6, gyy50.33), caused by the Ge/Si mixing
the interface, then the ratio amounts to thousand:

P↑↓~H'z!

P↑↓~Hiz!
'103.

IV. DISCUSSION

The obtained results give the evidence that the driv
force of g-factor size dependence is the change of the c

tribution of theu 3
2 & states to the hole state in QD. To expla

the existing ratio between contributions of theu 3
2 & state and

the u 1
2 & state composing the hole state in QD, we apply

simplified model of the band structure without interaction
the electronic bands. We consider separately the energy s
trum of hole withJz56 3

2 and the energy spectrum of ho
with Jz56 1

2 in QD ~see Fig. 7!. In frame of this model, the
deepest energy levels in QD belong to hole withJz56 3

2 . In
the region of the excited states, one can find the levels

both u 3
2 & states andu 1

2 & states. If the mixing between theu 3
2 &

states and theu 1
2 &-states is included into consideration th

the true spectrum of a hole in QD can be obtained. In
region of the excited states, there are some ‘‘mixed’’ sta
with comparable contributions of both holes. The grou

state mainly consists of theu 3
2 & state. This qualitative mode
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is justified by results of numerical expansion of hole states
QD on theu 3

2 & states andu 1
2 & states .

Figure 5 presents the contributions of theu 3
2 &-states for

the ground and excited states of confined hole in the qu
tum dot with sizesl 515 nm andh51.5 nm. These results

show that the contributions of theu 3
2 & states are smaller fo

more excited states than for deeper states. For example

the first excited state theu 3
2 &-state contribution goes dow

until 79%, while for the ground state it is about 84%. For t

ninth excited state, theu 3
2 &-state contribution is about 60% o

the wave function.

FIG. 6. The wave functions ofu 3
2 &-states andu 1

2 &-states for first
four levels in quantum dot: ground state—(a), (b), first excited
state—(c), (d), second excited state—(e), ( f ), third excited

state—(g), (h). The center right panel presentsu 1
2 &-states and the

center left panel presentsu 3
2 &-states. For clarifying the character o

wave functions for first and second excited states, we create
superposition of these wave functions (1/A2)@ uc1&6uc2&exp(iw)]
with any optimal phasew, which demonstratesp-like character~see
panel with *!. The panel (c* ) corresponds to ‘‘1 ’’ and (e* ) corre-
sponds to ‘‘2 ’’ in this superposition, both are related to th

u 3
2 &-states. Analogously the panels (d* ) and (f * ) correspond to the

u 1
2 &-states.

FIG. 5. Theu 3
2 &-state contribution for the ground state and ni

excited states in Ge quantum dot vs. the state energy. The ener
counted from valence-band edge in bulk Si, the energy of
ground stateE05420 meV.
1-8
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The contribution of theu 3
2 & state in the QD hole states

not described by smooth function of the energy. For exp
nation of this stepwise change, we construct the wave fu

tions of u 3
2 & states andu 1

2 & states separately.
The calculated wave functions of these states for the

four levels in QD are presented in Fig. 6. Our results all
us to determine the character of wave functions. TheJz
56 3

2 part of the ground state has thes-like wave function.
As to part withJz56 1

2 , which is about 16% of the groun
state, it has thed-like wave function. If we consider two
spectra of hole withJz56 3

2 and with Jz56 1
2 in our sim-

plified model, then we will finds-like, p-like, d-like, . . . ,
states in each spectrum~see Fig. 7!. Certainly, the lowest
state is thes-like state, then thep-like state follows, the

d-like state, and so on. A degree of theu 1
2 &-state admixture to

the u 3
2 &-state is determined by energy gap between th

states and is proportional to (E63/22E61/2)
21. From the

data in Fig. 6, one can conclude that the ground stat
formed by mixing of thes-like state from the spectrum o
hole withJz56 3

2 and thed-like state from spectrum of hole

with Jz56 1
2 . In this case, the admixture of theu 1

2 & states is
determined by energy gapDE05E63/2

s 2E61/2
d . The first and

the second excited states in QD are formed by mixing of
p-like states from both spectra. At first glance, the chara
of these wave functions is not clear. But the superposit
1/A2@ uc1&6uc2&exp(iw)] has p-like character~see panels
with * in Fig. 6!, that allows us to classify its parts asp-like
wave functions. In these cases, the energy gaps are the

(DE15DE25E63/2
p 2E61/2

p ), and theu 1
2 &-state contributions

are equal. The third excited state is formed by mixing
d-like state from the spectrum of hole withJz56 3

2 and the
s-like state from the spectrum of the hole withJz56 1

2 . In

this case, theu 1
2 &-state admixture is determined by ener

gapDE35E63/2
d 2E61/2

s , the distance between the interac

ing energy levels is smaller and theu 1
2 &-state admixture is

higher than for underlying levels. By this way, one can fi
the ratio between the energy gaps in all four cases (DE0
.DE1 , DE15DE2 andDE2.DE3) and explain the degre

of the u 1
2 &-state admixture for the first four levels in the qua

tum dot. For higher levels, the interpretation is more di
cult, because the wave functions of these states are m
complicated and it is impossible to classify them ass-like,
p-like, d-like, . . . , wave functions. So, the contribution rat

FIG. 7. The schematic sketch of energy spectra ofu 3
2 &-states and

u 1
2 &-states in the model of noninteracting electronic bands.
20530
-
c-

st

e

is

e
r

n

me

e

re

between theu 3
2 & state and theu 1

2 & state is determined by th
energy gap, which depends on the character of the w
functions of interacting states.

Let us find the reasons determining the change of
ratio with nanocluster sizesh, l. When proportions of the
pyramid (h/ l 51/10) are preserved, the spatial distribution
strains and their magnitudes in the quantum dot are not
nificantly changed with increasing of nanocluster sizes. T
strain splitting between the light and heavy hole states
mains the same in this case. The quantum confinement
ergy becomes smaller for larger nanoclusters, for exam
for nanocluster with sizesl 5100 nm andh510 nm, it is
about a few meV. Therefore, the ground hole state shifts
the bottom of the potential well. The excited states are no
sensitive to the change of the quantum confinement ene
because their localization lengths are larger than the na
cluster size. The tails of the wave function penetrate i
Silayer surrounding Ge nanocluster. Hence, the shift of
excited states is smaller than for ground state. The ene
gap DE0 between thes-like state of hole withJz56 3

2 and
thed-like state of hole withJz56 1

2 increases. Consequentl

the u 1
2 &-state contribution to the hole ground state decrea

and the wave function becomes closer to the heavy h
state. In this case, the main reason determining the chang

the contribution ratio between theu 3
2 & state and theu 1

2 & state
is the quantum-confinement factor~the change of the con
finement energy!.

The obtained results give the evidence that the knowle
of the hole wave function structure is very important f
interpretation of magnetic properties.

Experimentally, the holeg factor is usually obtained from
optical measurements. In these experiments, the photolu
nescence spectra in magnetic field are studied.37–39 The g
factor of hole was derived from experimental value of ex
ton g factor gex and electrong factor ge , using the equation
gex5gh6ge ~‘‘ 2 ’’ for bright excitons, ‘‘1 ’’ for dark exci-
tons!. To avoid the systematic inaccuracy caused by exist
of exchange interaction between electron and hole, one m
carry out the experiment with ‘‘free’’ hole~not bounded in
exciton!. It may be the magnetotunneling experiment, whi
is analogous to experiment with an electron.40 In this case,
the choice of the direction of magnetic field plays importa
role, because the Zeeman splitting and the probability of
Zeeman transitions are in strong dependence on
magnetic-field direction. For directionHiz, the Zeeman tran-
sitions are almost forbidden. But in the caseH'z, the Zee-
man splitting is vanished. Therefore, it would be better
carry out the experiment in the tilted magnetic field, wh
the ground hole state in QD is sufficiently splitted and t
Zeeman transitions are allowed.

V. SUMMARY

We have studied the effect of the external magnetic fi
on the hole states in the Ge/Si quantum dots. We have de
oped a method for calculation of the hole~or electron! g
factor in quantum dots, using tight-binding approach. T
size dependence of the principal values of the holeg factor
for Ge/Si quantum dot has been calculated.
1-9
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We have found the significant difference betweeng factor
of the hole ground state in QD andghh56k ~the effective
heavy holeg factor in the strained bulk semiconductor!. With
increasing of the nanocluster size, this difference reduces
the holeg factor in QD trends toward the heavy holeg factor.
We conclude that the effects of quantum confinement
strains lead to the suppression of the spin-orbit interac
due to the admixture of the light and split-off holes states a
the decrease of the effective angular momentum of hole

We give the recipe of the estimation of the holeg factor in
QD, based on the knowledge of the structure of wave fu
tion only. First, one should analyze the wave function, se
rate the contribution of the main electronic band and cal
late the admixture of the nearest bands. Second, one sh
calculate theg factor of whole state taken into account co
tributions of all significant bands. Each electronic band h
its intrinsic g factor. The final value of theg factor of whole
state will be the sum of the intrinsicg factors of each parts
R
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og
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M

M
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iz
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h-
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with their weighting coefficients. This estimation does n
take into account the contribution of the orbital momentu
but in the case of Ge/Si QD this leads to inessential devia
from true value of theg factor.

The method of theg-factor calculation proposed in thi
paper allows one to carry out the analysis of the exist
experimental data and to compare them with theoretical
ues of the carrierg factors in quantum dots, grown in differ
ent heterostructures, since it can be applied not only to
Ge/Si system.
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