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1. INTRODUCTION

The interaction of electronic states having a spin of

 

±

 

1/2 with an external magnetic field us described by the
Lande

 

 g

 

 factor characterizing the spin splitting of a free
electron (

 

g

 

 

 

≈

 

 2). The interaction with the lattice poten-
tial in solids leads to a considerable difference of the

 

 g

 

factor from that for a free electron. As the system
dimensionality decreases from 3D to 2D and lower, size
quantization effects lead to new changes in the 

 

g

 

 factor
of charge carriers. For example, quantization for elec-
trons in a low-dimensional system leads to a consider-
able renormalization of the value of the

 

 g

 

 factor [1] and
to its strong anisotropy [2]. The 

 

g

 

 factor contains
numerical information on the change in the band struc-
ture of the semiconductor upon the reduction in its
dimensionality. For this reason, a large number of the-
oretical and experimental studies are devoted to analy-
sis of this parameter. In some publications dealing with
electron states, consistent

 

 

 

kp

 

 theories have been devel-
oped, which make it possible to calculate the 

 

g

 

 factor in
quantum wells and superlattices [3] as well as in quan-
tum dots [4]. For hole states, the Zeeman effect has
been studied theoretically and experimentally for struc-
tures with quantum wells [5–7].

Let us describe fundamental differences between
two-dimensional quantum wells and quantum dots,
which must lead to a change in the 

 

g

 

 factor. Broad
quantum wells in magnetic fields of energies smaller
than the quantization energy (or the energy of band
splitting caused by elastic stresses) can be treated in the
approximation of a bulk semiconductor to obtain values
of 

 

g

 

 factors for hole subbands directly from the exact
form of the 8 

 

×

 

 8 Hamiltonian in the 

 

kp 

 

theory: 

 

g

 

||

 

 = 6

 

k

 

,

 

g

 

⊥

 

 = 0 for a heavy hole and 

 

g

 

||

 

 = 2

 

k

 

, 

 

g

 

⊥

 

 = 4

 

k

 

 for a light

hole (

 

g

 

||

 

 and 

 

g

 

⊥

 

 are the 

 

g

 

 factor components parallel and
perpendicular to the principal axis of the structure
(

 

z

 

 axis); 

 

k

 

 and 

 

q

 

 are the Luttinger parameters, the latter
parameter being omitted in view of its smallness). In
narrower quantum wells, the indeterminacy in momen-
tum 

 

k

 

z

 

 increases, leading to a modification of the 

 

g

 

 fac-
tor for a light hole due to admixture of states of the split
off band and the conduction band (we assume here that

 

z

 

 is the growth direction of the epitaxial film) [7]. The
Lande factor for a heavy hole at the bottom of the band
practically does not change since the heavy hole band
does not interact with the nearest bands. In narrow wells,
the

 

 g

 

 factors for light and heavy holes change due to the
effect of the barriers forming the quantum well [5].

In the case of quantum dots, a considerable renor-
malization of the

 

 g

 

 factor of hole states must be due to
the emergence of a quantizing potential not only to in
the growth direction, as in the case of 2D structures, but
to equally strong quantization in the lateral direction (in
the 

 

xy

 

 plane). This leads to indeterminacy in 

 

k

 

x

 

 and 

 

k

 

y

 

and, hence, to a strong mixing of light and heavy hole
bands with the split off band [8]. As a rule, this mixing
is disregarded in theoretical analysis of the Zeeman
effect in 2D systems, since states at the bottom of the
band, where 

 

k

 

x

 

, 

 

k

 

y

 

 = 0, are considered.

In quantum dots created on the basis of stressed het-
erostructures, the 

 

g

 

 factor may change significantly due
to inhomogeneity of strains within quantum dots. If we
compare a quantum dot with a quantum well grown in
the (100) direction, shear strains 

 

ε

 

xy

 

, 

 

ε

 

xz

 

, 

 

ε

 

yz

 

 leading to
mixing of light and heavy hole bands are absent in the
quantum well [8], while the quantum well experiences
such strains.
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Thus, in the case of quantum dots, quantization in
all three directions and strain inhomogeneity must lead
to a considerable change in the

 

 g 

 

factor of hole states
due to energy band mixing.

We propose a method of calculating the 

 

g

 

 factor for
hole states in quantum dots, using the strong coupling
approach. This method makes it possible to take into
account the specific form of a quantizing potential
(described not only by an analytic functions) and calcu-
late the

 

 g

 

 factor for a quantum dot of any shape and of
an infinitely small size. The proposed method can be
also applied for calculating the electron states in quan-
tum dots.

The paper has the following structure. In Section 2,
the method of calculating the

 

 g

 

 factor is described. The

 

g 

 

factor for hole states in germanium quantum dots in a
silicon matrix is calculated in Section 3. Strong anisot-
ropy of the 

 

g

 

 factor of holes is discovered and the
dependence of the 

 

g

 

 factor of a hole on the quantum dot
size is established. The probabilities of Zeeman transi-
tions as functions of the magnetic field direction are
investigated. Section 4 is devoted to analysis of
obtained results. The factors determining the magni-
tude of the

 

 g

 

 factor and its dependence on the island
size are revealed using a simplified model of noninter-
acting bands.

2. COMPUTING METHOD

This method is evolution of the idea proposed by us
earlier in [9], where an atomistic approach was used for
calculating the 

 

g

 

 factor of the hole state in a quantum
dot. This approach involves the computation of the
angular momentum of a hole in an atomic orbital. How-
ever, as we pass to the limiting case of a bulk crystal,
this approach fails to provide values matching the bulk
value of the

 

 g

 

 factor. For this reason, we extend the
former approach by taking into account the angular
momentum of Bloch functions.

The Zeeman interaction of a particle having a mag-
netic moment 

 

M

 

 with a magnetic field 

 

H

 

 can be written
in the form

Magnetic moment 

 

M

 

 is connected with angular
momentum 

 

J 

 

through the relation

where 

 

µ

 

B

 

 is the Bohr magneton and 

 

g

 

0

 

 is the 

 

g

 

 factor
equal to 2 for particles with purely spin electron mag-
netism and to 1 for those possessing purely orbital elec-
tron magnetism.

We introduce the magnetic moment 

 

M

 

QD

 

 of a hole
(electron) in a quantum dot, which is measured in units
of the Bohr magneton:

Ĥ –M̂ H.⋅=

M g0µBJ,=

MQD L 2S,+=

 

where

 

 L

 

 and 

 

S

 

 are the orbital and spin components of
the magnetic moment. We write the Hamiltonian of
interaction with the magnetic field in the form

It follows from symmetry considerations that the
ground state in a quantum dot is doubly degenerate and
forms a Kramers doublet. The Zeeman interaction
energy for states of a Kramers doublet is given by

where  (

 

α

 

 = 

 

x

 

, 

 

y

 

, 

 

z

 

) are Pauli spin matrices and gαβ is
a tensor which has nine independent components in the
general case [10]. In most cases (except in low-symme-
try structures), we have gxy = gyx , etc., and cross terms
can be eliminated by an appropriate choice of the x, y,
and z axes (which are known as principal axes). In these
axes, the g tensor is characterized by three principal
values gxx, gyy, and gzz .

In the first order of perturbation theory, the g factor
can be determined from the solution of a secular equa-
tion, which gives

(1)

where ψ and ψ* are the wave functions forming a
Kramers doublet for a given level and n is a unit vector
directed along the magnetic field. Consequently, in
order to calculate the g factor, we must find the matrix

elements of operator . To determine the matrix
elements, we must find wave eigenfunctions ψ and ψ*
for hole or electron states in a quantum dot. We assume
that the magnetic field is quite weak and does not
change significantly the waves functions of a hole
(electron), which enables us to use wave eigenfunctions
of the unperturbed Hamiltonian for calculating the
matrix elements.

The wave eigenfunctions ψ and ψ* for hole states
were determined by us in [9], where the energy spec-
trum of holes in a quantum dot was calculated. For this
purpose, we used the strong coupling model with basis
sp3 [11]. In this model, each atom is supplied with a set
of orbitals s, px, py, and pz, and the dimensionality of the
vector of state of the system is equal to the number of
atoms multiplied by the number of orbitals per atom.
The interactions between nearest neighbors are taken
into account in the two-center approximation [12] as
well as the spin–orbit interaction [13]. Deformation
effects [14] are taken into account by introducing the
dependence of interatomic matrix elements of the
Hamiltonian on the orientation of relevant bonds [12]
and their length [15]. Vector |ψ〉 is determined using the
free relaxation method [16]. Each vector component
ψnN is the amplitude of probability of finding a particle
in the nth orbital of the Nth atom.

ĤQD H( ) µBH M̂QD⋅ µB L̂ 2Ŝ+( ) H.⋅= =

1
2
---µBσ̂αgαβHβ,

σ̂α

g 2 ψ n M̂QD⋅ ψ 2 ψ n M̂QD⋅ ψ∗ 2
+ ,=

M̂QD
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Since the vector of the state corresponding to a cer-
tain size quantization level is defined as a combination
of atomic orbitals, we must determine matrix elements

of operator  in the representation of atomic orbit-
als. Let us first define the orbital moment L. We can

ascribe to each diagonal matrix element 
the physical meaning of the angular momentum of a
particle on the corresponding nth orbital of the chosen
Nth atom in a quantum dot.

For a hole (electron) with coordinates (x, y, z)

located with probability  in the nth orbital around
the chosen Nth atom with coordinates (X, Y, Z), we can
write the angular momentum operator

where eαβγ is a unit antisymmetric tensor.
Using the rules for differentiating operators with

respect to time [17], we can express the momentum

operator  = m  in terms of Hamiltonian  and the
coordinate operator ( ):

where m is the mass of a free electron. Then the angular
momentum operator has the form

The obtained expression cannot be used directly for

determining the matrix elements  and

 since the wave functions ψ and ψ* have
been calculated in the strong coupling approximation,
while operator  = ( ) of the hole (electron) coor-
dinates is meaningless in this approximation. For this

reason, we replace it by coordinate operator  =

( ) of the atom possessing the orbital,

(2)

Carrying out the substitution   , we lose a frac-
tion of the angular momentum associated with the
strongly oscillating Bloch wave function (which can be
referred to as the effective spin angular momentum
component) and have only a part of the angular
momentum associates with a smooth envelope of the
wave function of a hole (electron), viz., orbital com-
ponent.

If we disregard the interaction between the nearest
energy bands, we must simply supplement Eq. (2) with
the effective spin component of angular momentum of
a charge carrier in the corresponding energy band (con-

M̂QD

ψnN L̂ ψnN

ψnN
2

L̂α
1
�
---eαβγ p̂βr̂γ,=

p̂ r̂̇ Ĥ0

r̂ x̂ ŷ ẑ, ,

p̂
im
�

------ Ĥ0r̂ r̂Ĥ0–( ),=

L̂α
im

�
2

------eαβγ r̂βĤ0r̂γ.=

ψ M̂QD ψ
ψ M̂QD ψ∗

r̂ x̂ ŷ ẑ, ,

R̂

X̂ Ŷ Ẑ, ,

L̂α
im

�
2

------eαβγ R̂βĤ0R̂γ.=

r̂ R̂

duction band for electrons and valence band for holes)
in order to obtain the total moment MQD. However, the
state of a hole (electron) in a quantum dot is formed not
only by states from the valence (conduction) band;
neighboring bands also make a contribution to the for-
mation of the state. The nearest bands for hole states of
the split off (SO) band and the conduction band (CB).
For electron states, these are bands of heavy holes (HH)
and light holes (LH) as well as the split off band. The
contribution from other bands is negligibly small.

The wave function of a hole (electron) can be pre-
sented in the form

where coefficients A1–A4 depend on the position of an
atom in a quantum dot and reflect the contributions
from the corresponding bands to the state of a particle
in the quantum dot. Each wave function component
possesses its own effective spin and interacts with the
magnetic field in accordance with the following expres-
sions.

For a hole in the HH band, effective spin SHH is often
introduced for describing Zeeman sublevels [6]: spin
(SHH)z = –1/2 is ascribed to one of the sublevels with
Jz = –3/2, while spin (SHH)z = 1/2 is ascribed to the other
sublevel with Jz = 1/2. In this case, the Zeeman interac-
tion can be written in the form

(3)

where gHH is the g factor for a hole in the HH band. The
same can be done for a hole in the LH band: we ascribe
spin (SLH)z = –1/2 for the sublevel with Jz = –1/2 and
spin (SLH)z = 1/2 for the sublevel with Jz = 1/2. Then the
Zeeman interaction in the LH band has the form

(4)

where gLH is the g factor for a hole in the LH band.

For a degenerate valence band, the interaction with
the magnetic field at point Γ can be described in the
form [8]

where J is the effective angular momentum of a hole
(J = 3/2). We will use this expression in our subsequent
analysis, although expressions (3) and (4) can also be
used in principle.

The Hamiltonian of the Zeeman interaction in the
split off band and in the conduction band can also be
expressed in terms of the corresponding effective spins
SSO and SCB . For a hole in the split off band, we have

(5)

ψ| 〉 A1 R( )CB| 〉 A2 R( ) HH| 〉+=

+ A3 R( ) LH| 〉 A4 R( ) SO| 〉 ,+

Ĥ H( ) µBgHH ŜHH H⋅( ),=

Ĥ H( ) νBgLH ŜLH H⋅( ),=

Ĥ H( ) 2µB k Ĵ H⋅( ) q Ĵx
3
Hx Ĵy

3
Hy Ĵz

3
Hz+ +( )+[ ] ,=

Ĥ H( ) µBgSO ŜSO H⋅( ),=
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while for an electron in the conduction band, we have

(6)

where gSO is the g factor of a free hole in the split off
band, gCB is the g factor in the conduction band, and

effective spin operators  and  are defined in
terms of the Pauli spin matrices , , and , acting

on the corresponding spin variables,  = /2.

The total energy of interaction with the magnetic
field taking into account the orbital moment L is given
by the sum

(7)

where  is defined by formula (2). It follows hence that

(8)

The final formula for calculating the total magnetic
moment has the form

(9)

Using now this expression, we can determine the

matrix elements  and  and
calculate the g factor by formula (1).

Ĥ H( ) µBgCB ŜCB H⋅( ),=

ŜSO ŜCB

σ̂x σ̂y σ̂z

Ŝα σ̂α

Ĥ H( ) 2µB k Ĵ H⋅( )[=

+ q Ĵx
3
Hx Ĵy

3
Hy Ĵz

3
Hz+ +( ) ]

+ µBgSO ŜSO H⋅( ) µBgCB ŜCB H⋅( ) µB L̂ H⋅( ),+ +

L̂

M̂QD( )α 2k Ĵα 2qĴα
3

+=

+ gSO ŜSO( )α gCB ŜCB( )α L̂α .+ +

M̂QD( )α 2k Ĵα 2qĴα
3

gSO ŜSO( )α+ +=

+ gCB ŜCB( )α
im
�

------eαβγ R̂βĤ0R̂γ.+

ψ M̂QD ψ ψ M̂QD ψ∗

3. CALCULATION OF THE g FACTOR
IN A Ge/Si SYSTEM WITH QUANTUM DOTS

Quantum dots in a Ge/Si system are formed during
heteroepitaxy of germanium on a Si(100) substrate
under certain conditions of transition from the 2D-layer
mechanism of germanium film growth to the 3D
growth. A typical size of islands in the familiar experi-
mental studies varied from 10 to 20 nm, their height
being 1–2 nm; consequently, the behavior of charge
carriers in these islands is determined by quantum size
effects [18]. The gap in energy bands existing in the
Ge/Si heterosystem and deformation effects lead to the
formation of a potential well in germanium for holes
only. The states in a quantum dot are mainly formed
from the states of the valence band, i.e., are a superpo-
sition of states |3/2, ±3/2〉 , |3/2, ±1/2〉 , and |1/2, ±1/2〉
(state |J, Jz〉  is characterized by the angular momentum
J and its component Jz along the z axis, viz., growth
direction; Fig. 1). It follows from experimental results
that a germanium island can be regarded as a square
pyramid whose height h is an order of magnitude
smaller than the base side l (h/l ~ 1/10) [19]. In fact, an
island is a quasi-two-dimensional quantum object with
a preferred symmetry axis z. The strain distribution in a
quantum dot [14] removes the degeneracy existing at
point Γ in the valence band. Since the crystal is sub-
jected to uniaxial extension along the z axis within the
island, states |3/2, ±3/2〉  of heavy holes are at the bot-
tom of the valence band [20]. Consequently, we can
expect that the contribution from heavy holes to the
ground state in a quantum dot is predominant. The
same conclusion can be drawn taking into account the
fact that the effective mass of heavy holes is larger than
that of light holes.

Let us consider the case when the magnetic field is
parallel to the growth direction (H || z). The energy of
interaction with the field is determined by the magnetic
moment component along the magnetic field, i.e., along
z. In order to calculate the g factor, we must know the

matrix elements of operators , , ( )z , ( )z ,

and .
Let us first demonstrate that g factor can be esti-

mated only from the wave function expansion in the
basis |J, Jz〉 , i.e., in the basis |3/2, ±3/2〉 , |3/2, ±1/2〉 , and
|1/2, ±1/2〉 . We will disregard the effect of the conduc-
tion band on the hole states in the Ge/Si system of a
quantum dot because the contribution from the states of
this band to the wave function amounts to only about
0.5%.

The results of expansion of the wave function of the
ground state in a quantum dot having a size l = 15 nm
and h = 1.5 nm are compiled in the table. The compo-
nent with Jz = ±3/2 constitutes approximately 84% of
the entire wave function. The remaining part corre-
sponds to the component with Jz = ±1/2. It can be seen
from the table that the state with the “up” spin, |↑〉  (the
state with the average angular momentum directed

Ĵ z Ĵ z
3

ŜSO ŜCB

L̂z

Si

5 ML

1.5 nm

1

2
x[110]

y[
–
110]

z[001]
15 nm

15 nm

Fig. 1. Schematic diagram of a typical quantum dot
(germanium island) in silicon: germanium island (quantum
dot) (1), germanium film (wetting layer) (2), and monolayer
(ML).



JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYSICS      Vol. 96      No. 2      2003

ZEEMAN EFFECT FOR HOLES IN A Ge/Si SYSTEM WITH QUANTUM DOTS 325

along the field) is mainly formed from components
with Jz = 3/2 and Jz = –1/2, while the |↓〉  state (the state
with the average angular momentum opposite to the
field) is formed by components with Jz = –3/2 and Jz =
1/2. The component with Jz = ±1/2 reflects contribu-
tions from states|3/2, ±1/2〉 , |1/2, ±1/2〉 , these contribu-
tions being almost identical and constituting about 8%
each. This means that the formation of the ground state
in a quantum dot is equally affected by the light hole
subband and the split off subband.

If the ground state of a hole in a quantum dot were
formed only by states with Jz = ±3/2, i.e., the |↑〉  state
corresponded to Jz = 3/2 and the |↓〉  state to Jz = –3/2,
the Zeeman splitting in a magnetic field H || z would be
determined by the expression

(10)

where 〈(MQD)z〉  and 〈Lz〉  are the mean values of the z
components of the magnetic and orbital moments in the
|↑〉  state.

In obtaining estimates, the term with q can be omit-
ted in view of its smallness (|q | = 0.06) [21]. If we take
into account the admixture of states with Jz = ±1/2,
expression (10) is transformed to

where a, b, c, and d are the probabilities of values Jz =
3/2, Jz = 1/2, Jz = –1/2, and Jz = –3/2 (for J = 3/2) in the
|↑〉  state, respectively, e and f are the probabilities of the
values Jz = 1/2 and Jz = –1/2 (for J = 1/2) in the |↑〉  state,
respectively. For a quantum dot of size l = 15 nm and
h = 1.5 nm, a ≈ 0.84, b ≈ 0.02, c ≈ 0.05, d ≈ 0, e ≈ 0.01,
and f ≈ 0.08 (see table).

An estimate obtained disregarding the 〈Lz〉  term
gives the following value for the g factor:

E Hz( ) 2µB MQD( )z〈 〉 Hz=

=  2µBHz 2k
3
2
--- 2q

27
8
------ Lz〈 〉+ + 

  ,

E Hz( ) 2µBHz 2k a d–( )3
2
---





=

+ 2k b c–( ) gSO e f–( )+[ ] 1
2
--- Lz〈 〉+





,

gzz 6k 0.82× 2k 0.03× gSO 0.07,×+–≈

here, k = –3.41 ± 0.03 [21] and gSO = –10 ± 3 [22],
which gives |gzz | ≈ 15.86.

Calculating the g factor by formula (1) for the same
island size taking into account the orbital moment 〈Lz〉
and using the wave functions determined in the strong
coupling approximation, we obtain |gzz | = 15.71.

A comparison with the bulk value of the longitudi-
nal g factor for a heavy hole, |gHH | ≈ 6k = 20.46, shows
that size quantization reduces the g factor, indicating
the suppression of the spin-orbit interaction due to an
admixture of the state with a smaller value of J (J = 1/2)
and a decrease in the effective angular momentum of
the particle.

In order to estimate the contribution of the orbital
moment, we calculated g factor using formulas (1) and

(8), omitting in Eq. (8) all the terms except . As a
result, we obtained an order-of-magnitude smaller
value of g factor: |gzz | = 0.59. Thus, the g factor is
mainly determined by the effective angular momentum
J rather than by the orbital moment L.

We will give here the principal values of the g factor
for the ground state in a quantum dot of size l = 15 nm
and h = 1.5 nm, calculated by formula (1): |gzz | = 15.71
(in the growth direction [001]), |gxx | = 1.14 (in the [110]

direction), and |gyy | = 1.76 (in the [ 10] direction).

3.1. Dependence of g Factor on the Size 
of Germanium Island 

The obtained results clearly demonstrate anisotropy
in the values of g factor: gzz is an order of magnitude
larger than the values of gxx and gyy . Anisotropy
increases upon an increase in the island base for a con-
stant height (Fig. 2). This tendency can be explained by
the fact that the wave function of the ground state is
close in composition to the wave function |3/2, ±3/2〉
(for a heavy hole), in which the transverse components
of the g factor are close to zero [6].

We can assume that the wave function of the ground
state becomes closer and closer to the wave function of
a heavy hole as the size of the island increases, which
enhances the anisotropy of the g factor.

Indeed, according to the results of our calculations,
the contribution of the state with Jz = ±3/2 to the wave
function of a hole increases with the lateral dimension

L̂α

1

Results of expansion of wave functions in the basis |J, Jz〉  for two spin sublevels |↑〉  and |↓〉  of the ground state in a germanium
island of height h = 1.5 nm and base side l = 15 nm

|J, Jz〉

|↑〉 83.67% 2.26% 4.7% 0.08% 1.17% 8.11%

|↓〉 0.08% 4.7% 2.26% 83.67% 8.12% 0.67%

3
2
--- 3

2
---, 3

2
--- 1

2
---, 3

2
--- –

1
2
---, 3

2
--- –

3
2
---, 1

2
--- 1

2
---, 1

2
--- –

1
2
---,
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of the island, and the wave function tends to “pure”
state |3/2, ±3/2〉  (Fig. 3). For example, as the lateral size
l of the island increases from 15 to 30 nm for height
h = 1.5 nm, the contribution from the component with
Jz = ±3/2 to the wave function of the ground state
increases from 83 to 86%. Anisotropy of the g factor
increases: the value of |gzz | increases to 17.0, while the
transverse components decrease to |gxx | = 0.91 and
|gyy | = 1.71. If we increase the island size to that the
pyramid proportion is preserved (h/l = 1/10), the anisot-
ropy of the g factor becomes stronger. For example, for
l = 30 nm and h = 3 nm, the principal values of the g fac-
tor are as follows: |gzz | = 20.99, |gxx | = 0.06, and |gyy | =
1.1. It turns out that the contribution of the component
with Jz = ±3/2 to the wave function of the ground state
in this case increases to 90%, leading to such a strong
anisotropy.

The obtained dependence of the g factor on the
island size indicates the correctness of our approach.
Indeed, as the lateral size of the island increases, we
pass to the limiting case of a pseudomorphic stressed
germanium film. Inhomogeneity of strains typical of

quantum dots disappears. The indeterminacy in kx and
ky for states at the bottom of the band becomes equal to
zero. All these factors suppress the interaction of the
HH band with other energy bands; as a result, the g fac-
tor of the ground state tends to the g factor of a heavy
hole, which is in accordance with our results.

3.2. Sharpness of Germanium Island Boundaries 

The above values of g factor were obtained for an
island with sharp boundaries. If we take into account
diffuse blurring of the island boundaries, which is
always observed in real Ge island, these values will
slightly change.

The blurring of boundaries was taken into account
as follows: each atom in the crystal lattice was replaced,
with a probability of 2/3, by one of its four nearest
neighbors. As a result, we obtained a boundary with a
smooth variation in the composition of the substance
within three monolayers.

Taking into account the blurring of island bound-
aries, we found that the transverse components of the g
factor change significantly (e.g., the value of |gxx |
decreases from 1.14 to 0.52 for an island with a lateral
size of l = 15 nm, while the value of |gyy | decreases from
1.76 to 0.18. The longitudinal component |gzz | of the g
factor virtually does not change and amounts to 15.81.
Consequently, anisotropy of the g factor increases on
account of blurring of the heteroboundary. This is prob-
ably associated with an effective increase in the island
size.

3.3. Probability of Zeeman Transitions 

The probability of Zeeman transitions is directly
connected with the form of the wave function. For a
state with Jz = ±3/2 in a magnetic field H || z, induced
transitions between the Zeeman subleves with Jz = 3/2
and Jz = –3/2 are forbidden by the selection rules since
allowed transitions must satisfy the condition ∆Jz = ±1.
An admixture of a state with Jz = ±1/2 facilitates transi-
tions between the Zeeman sublevels of the ground state
in a germanium island. Consequently, the prohibition
imposed on Zeeman transition is released upon an
increase in the island size.

For an arbitrary direction h of the magnetic field, the
energy of interaction with the field is determined by the
angular momentum component along h. States |J, Jz〉
are transformed into states|J, Jh〉  as follows:

here, θ and ϕ are polar angles of vector h in the system
of coordinates x, y, z, and matrix R is connected with the
standard matrix of rotations [23],

J Jz,| 〉 J Jh,| 〉 RJz Jh

J θ ϕ,( ) J Jz,| 〉 ,
Jz

∑=

RJz Jh

J θ ϕ,( ) DJz Jh

J 0 θ ϕ–,–,( ).=

~~ ~~

gxx, gyy, gzz
18

16

14
4

2

0
10 15 20 25 30

l, nm

1

2

3

Fig. 2. Dependence of the g factor of the ground state of a
hole on the lateral size l of a germanium island of height h =
1.5 nm: gxx (1), gyy (2), and gzz (3).
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Fig. 3. Contribution of the component with Jz = ±3/2 to the
wave function of the ground state of a hole as a function of
the lateral size l of a germanium island of height h = 1.5 nm.
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In a particular case when θ = π/2 and ϕ = 0, the mag-
netic field direction lies in the plane of the island and
coincides with the x axis. Let us consider a pure state
with Jz = 3/2. In the |J, Jz〉  representation, the wave
function of this state can be written in the form

where the squares of the coefficients (a2, b2, c2, and d2)
reflect contributions from the states with corresponding
values of Jz (a2 + b2 + c2 + d2 = 1). Under transformation

(π/2, 0), state  is transformed into

. It follows hence that the fraction of each

component with Jh = ±1/2 amounts to 3/8 of the entire
wave function. In the whole, they constitute 75%; i.e.,
the contributions from components with Jh = ±1/2 for
the direction of magnetic field H in the basal plane of
the are larger as compared to the case when H || z, and
the probability of Zeeman transitions increases. This is
also observed in the case when the wave function ini-
tially contains a correction with Jz = ±1/2 as, for exam-
ple, for the ground state in the quantum dot in question,
where is amounts to 16%.

Let us consider some numerical estimates of the
probabilities of Zeeman transitions for different direc-
tions of the magnetic field.

The probability of an induced transition between
Zeeman sublevels is determined by the interaction of
the magnetic moment with oscillating magnetic micro-
wave field H⊥ cos(2πνt) (field H⊥  is perpendicular to the
constant magnetic field) and is proportional to the
squared matrix element of the magnetic moment com-
ponent µ⊥  of a particle in the direction of this field [24],

If the magnetic field direction is such that H || z the
magnetic moment component µ⊥  lies in the island basal
plane and is proportional to the principal values of the

g tensor, gxx (direction [110]) and gyy (direction [ 10]).
In the particular case when the microwave field H⊥  is

ψ| 〉 a
3
2
--- 3

2
---, b

3
2
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P↑↓ ↓〈 |µ̂⊥ H ⊥ ↑| 〉 2.∼

1

directed along [110], the transition probability P↑↓  is

proportional .

If the direction of the constant magnetic field is such
that H ⊥  z, the magnetic moment component lies in the
plane perpendicular to the basal plane; in the particular
case, when the microwave field H⊥  is directed along
[100], this component is proportional to the principal
value of the g tensor: µ⊥  ∝  gzz. In this case, the transition

probability is P↑↓  ∝  .

It can be seen that, for gzz = 15.71, gxx = 1.14, and
gyy = 1.76, the probabilities of induced transitions for
two directions of the magnetic field (H || z and H ⊥  z)
differ approximately by two orders of magnitude. If, in
addition, we take into account a decrease in the trans-
verse components of the g factor due to blurring of the
boundaries (gxx = 0.52 and gyy = 0.18), the difference in
the transition probabilities for H || z and H ⊥  z will be
by more than three orders of magnitude.

4. DISCUSSION

The obtained results show that the main factor deter-
mining the dependence of the g factor on the size of an
island is the change in the contribution to the wave
function of a hole from the component with Jz = ±3/2
upon a change in the island size.

The factors determining the relation between the
contributions from the components with Jz = ±3/2 and
±1/2 can be grasped from the following simplified
model disregarding the interaction between energy
bands. Let us consider separately the quantization of
the energy spectra of holes with Jz = ±3/2 and Jz = ±1/2.
In such a model, the deepest energy levels belong to
holes with Jz = ±3/2; in the range of excited states, these
levels are mixed with the levels of holes with Jz = ±1/2.
In a more realistic model taking into account the inter-
action between energy bands (e.g., the six- or eight-
band kp model or the strong coupling model), the
energy range containing energy levels of holes with Jz =
±1/2 and ±3/2 also contains some “mixed” states with
comparable contributions from both types of holes,
while the range corresponding to the deepest layers
contains states formed mainly by holes with Jz = ±3/2.
Such a qualitative model is in agreement with the
results of our calculations.

Figure 4 shows the contribution from the component
with the momentum component Jz = ±3/2 to the wave
functions of states in a quantum dot of size l = 15 nm
and h = 1.5 nm. The results of expansion show that the
component with Jz = ±3/2 constitutes approximately
84% of the wave function of the ground state (E0 =
420 meV). For the first excited state (E1 = 377), the
contribution from the component with v decreases
approximately to 79%. As the number of the excited
state increases, a tendency towards a decrease in the

gxx
2

gxx
2
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component with Jz = ±3/2 is observed. For the ninth
excited state (E9 = 303 meV), the contribution from the
component with Jz = ±3/2 amounts approximately
to 60%.

The form of the wave function of the ground state is
determined by the separation between the ground
energy level and the states of holes with Jz = ±3/2,
which lie in the range of excited states in a quantum dot.

The data presented in Fig. 4 show that the depen-
dence of the contribution from the component with Jz =
±3/2 on the hole energy cannot be described by a
smooth function. In order to explain the step form of
this dependence, we analyzed the form of wave func-
tions separately for the components with Jz = ±3/2 and
±1/2. Figure 5 shows the wave functions for the compo-
nents with Jz = ±3/2 and ±1/2, forming the first four
states in the quantum dot. In the ground state, the com-
ponent with Jz = ±3/2, which constitutes 84%, is
s-shaped. However, the component with Jz = ±1/2,
which is admixed on account of interaction between
energy bands and constitutes approximately 16%, is
d-shaped. If we return to the simplified model and con-
sider separately the quantization of the spectra of holes
with Jz = ±3/2 and ±1/2, each of these two spectra con-
tain s-, p-, and d-shaped states, etc. (see Fig. 6). Natu-
rally, the s-shaped state will be the lowest state in both
spectra, followed by p- and d-shaped states, etc. The
admixture of a state with Jz = ±1/2 to a state with Jz =
±3/2 is inversely proportional to the difference in the
energies of these states, i.e., (E±3/2 – E±1/2)–1. It follows
from the data presented in Fig. 5 that the s state from the
spectrum of a hole with Jz = ±3/2 interacts with the d
state from the spectrum of a hole with Jz = ±1/2 during
the formation of the ground energy level. In this case,
the contribution from the component with Jz = ±1/2 is

determined by the energy gap ∆E0 =  – . Dur-
ing the formation of the first and second excited states,
the p state from the spectrum of a hole with Jz = ±3/2
interacts with the p state of a hole with Jz = ±1/2. In

such cases, the energy gaps ∆E1 = ∆E2 +  – 
coincide; consequently, the contributions from the
component with Jz = ±1/2 are practically identical. Dur-
ing the formation of the third excited state, d states from
the spectrum of a hole with Jz = ±3/2 interact with the s
state from the spectrum of a hole with Jz = ±1/2. In this
case, the contribution from the component with Jz =

±1/2 is determined by the energy gap ∆E3 =  –

; i.e., the separation between interacting energy
levels decreases sharply, and the contribution from the
component with Jz = ±1/2 increases significantly. Thus,
we can establish a relation between the energy gaps in
all the four cases (∆E0 > ∆E1, ∆E1 = ∆E2, and ∆E2 >
∆E3) and explain the dependence of the contribution of

E 3/2±
s E 1/2±

d

E 3/2±
p E 1/2±

p

E 3/2±
d

E 1/2±
s
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Contribution of component with |3/2〉 , %

Fig. 4. Contribution of the component with Jz = ±3/2 to the
states of the discrete spectrum of a germanium island. The
energy of the state measured from the edge of the valence
band of silicon is laid along the abscissa axis. The island
size: height h = 1.5 nm and base side l = 15 nm.
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(c) (d)

(e) (f)
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Fig. 5. Wave function density distribution for the compo-
nent with Jz = ±3/2 (a, c, e, and g) and Jz = ±1/2 (b, d. f, and
h) (projection on the plane of the pyramid base) in the
ground (a, b), first excited (c, d), second excited (e, f), and
third excited (g, h) states of a hole in a quantum dot.
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the component with Jz = ±1/2 on the number of the state
in a discrete spectrum in a quantum dot.

The interpretation for the next energy levels is com-
plicated on account of the fact that the wave functions
of these states have a complex form and cannot be clas-
sified as s-, p-, … shaped states.

Let us now consider the factors determining the
variation of the relation between the contributions of
components with Jz = ±1/2 and ±3/2 upon the variation
of the island size.

If the size of an island increases so that the propor-
tions between dimensions is preserved (h/l = 1/10), the
distribution and magnitude of strains in the island does
not change significantly; consequently, the splitting
between the HH and LH bands remains unchanged. The
size quantization energy decreases and amounts, for
example, to a few millielectronvolts for l = 100 nm and
h = 10 nm. As a result, the ground state in the spectrum
of a hole with Jz = ±3/2 shifts towards the bottom of the
potential well. Excited states are less sensitive to a
change in the island size since their localization radius
is larger, and the wave functions penetrate more
strongly under the barrier (to silicon surrounding the
germanium island). Consequently, the position of
energy levels for holes with Jz = ±1/2 changes weaker
than for holes with Jz = ±3/2 upon an increase in the
island size. For this reason, the energy gap ∆E0 between
the ground s state of a hole with Jz = ±3/2 and the d state
of a hole with Jz = ±1/2 increases. Accordingly, the con-
tribution from the component with Jz = ±1/2 to the
ground state of the hole decreases, and the wave func-
tion becomes closer to the state of a hole with Jz = ±3/2.
In this case, the main factor determining the change in
the relation between the components with Jz = ±3/2 and
±1/2 is a quantum size factor (decrease in the size quan-
tization energy).

If only the lateral size of the island increases, the
size quantization energy remains practically unchanged
since it is mainly determined by the height of the island.
However, an increase in the l/h ratio leads to an increase
in biaxial strain εzz – (εxx + εyy)/2 [25], leading to an
increase in the splitting between the HH and LH sub-
bands. In this case, the reason for increasing the energy
gap ∆E0 is a deformation factor (change in strains in the
island).

The experimental value of the g factor for a hole in
quantum dots is usually a result of indirect measure-
ments. As a rule, the photoluminescence spectrum in a
magnetic field is analyzed [26–28], and the g factor of
a hole is calculated from the experimentally determined
g factor of an exciton (gex) and the g factor of an elec-
tron (ge) using the relation gex = gHH ± ge (the minus sign
is used for optically active excitons and the plus sign,
for optical inactive excitons). In order to eliminate an
additional systematic error associated with the exist-
ence of exchange interaction between the electron and
the hole in an exciton, a solitary hole in a quantum dot

must be analyzed instead of a hole bound with an elec-
tron to form an exciton complex. For this purpose, an
experiment involving tunneling of a hole through a
quantum dot in a magnetic field, similar to that pro-
posed in [29] for an electron, can be made. In this case,
it is important to choose appropriately the magnetic
field direction since it determines to a considerable
extent the Zeeman splitting and the intensity of the Zee-
man transitions. For the H || z direction, Zeeman transi-
tions are virtually forbidden. For H ⊥  z, the Zeeman
splitting is small. For this reason, it is expedient to carry
out experiments in a tilted magnetic field, when the
Zeeman splitting is strong enough, and the intensity of
induced transition is appreciable.

The method of calculating the g factor in quantum
dots proposed here will make it possible to compare
consistently the theory and available experimental data
on g factors of hole (electron) states in quantum dots
grown in various heterosystems, since its applicability
is not limited to quantum dots in the Ge/Si system.
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