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Abstract
We have investigated theoretically the strain distribution in pyramid-shaped
Ge/Si quantum dots (QDs) and their environment, using the atomistic
approach and Green function technique. Taking into account the results of
strain calculations, we have studied the hole discrete spectrum by the
tight-binding method. Energy levels, their dependence on dot size and
wavefunction density distributions have been obtained. We have proposed a
method for calculation of the Landé factor for localized states in QDs and
calculated the value of the g-factor for the ground state in the Ge/Si dot. We
have developed the theoretical model of spatially indirect excitons and
excitonic complexes, localized on the QD. The binding energy and optical
transition energy have been calculated for excitonic complexes with
different numbers of electrons and holes.
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1. Introduction

The determination of the energy spectrum, kinetics of
transitions between electronic levels and interactions of
elementary excitations, as well as correlation effects, form a
base of current fundamental studies of quantum dots (QDs).
Recent results of optical and electrical investigations of
QDs fabricated on the base of Ge/Si [1] demonstrated that
these structures have unique potential for applications in
nano- and opto- electronics. The physical properties of this
system depend on parameters of the QD (size, shape, lattice
mismatch), and the modelling of physical objects became a
powerful method for understanding real experiment results and
for predictions of new ones. Ge/Si(001) QDs exhibit a type-II
band lineup. The large (∼0.7 eV) valence band (VB) offset
in this heterojunction leads to effective localization of holes in
the Ge regions, whereas these Ge regions represent potential
barriers for electrons. When the hole is captured by the Ge
dot, its Coulomb potential results in binding of an electron in
the vicinity of the Ge dot. The spatially separated interacting
electron and hole are usually referred to as a spatially indirect
exciton.

There are many papers devoted to electronic structure
calculation in self-assembled QDs, using the effective mass
approximation [2–6], pseudopotentials [7] and the tight-
binding (TB) approach [8], but these studies concentrate

mainly on the InAs/GaAs heterosystem. Regarding Ge QDs,
realistic calculations of energy spectrum have been performed
only for free-standing spherical Ge nanoclusters [9]. To our
knowledge, there are no energy spectrum calculations for
pyramid-shaped self-assembled Ge islands. Also theoretical
studies of the g-factor [10] and properties of indirect
excitons [11, 12] in self-assembled QDs were only performed
for the model case of a spherical dot.

The aim of this work is computer modelling of electronic
structures of Ge/Si QDs and numerical investigation of
properties of spatially indirect excitons.

2. Strain distribution

The elastic strain due to the lattice mismatch between islands
and the surrounding matrix has essential effects on the
electronic structure of QDs [2, 13]. Sizes of the studied
islands are too small for consideration of their elastic properties
in terms of the continuum approach. In the present paper
strain distribution has been found in the atomistic approach,
in terms of atomic positions, using Keating’s valence-force-
field model [14].

The calculation was based on an original Green function
method [13], which allows us to reduce considerably the
computation resources. Conventional strain calculation
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techniques suppose periodic boundary conditions, and a large
calculation domain (or ‘supercell’) is needed to reduce the
unphysical elastic dot–dot interaction [7]. In contrast to this,
the Green function technique is not sensitive to the size of
calculation domain, and this allows us to shrink the calculation
domain so that only the atoms of the island and its immediate
surroundings are involved in the strain calculation.

Typical pyramidal Ge/Si islands with four {105}-oriented
facets and a (001) base, lying on a wetting layer of 0.7 nm
thickness, have been under study. The island size (the length
of the base side) has been varied from 6 to 15 nm. Ge islands
and wetting layer are embedded into the Si matrix.

The spatial distribution of strain in the Ge/Si QD has
been obtained. Inside the island the largest stress arises on
the periphery of the pyramid base, and the greatest relaxation
occurs in the apex of the pyramid, whereas the vicinity of
the pyramid apex in Si is most stressed over the Si matrix.
The main characteristic of the strain tensor is the compression
in the lateral plane and the dilatation in the growth direction
throughout the Ge island.

The analysis of the size dependence of the strain shows
the following results:

(a) values of strain components εαβ are independent of the
dot size over the range of size 10–15 nm in the central region
of the dot; this means that the macroscopic value of the strain
tensor is already reached in this range;

(b) components of the strain tensor increase in absolute
value logarithmically with QD size near the edge of the
pyramid base. This is in agreement with the macroscopic
behaviour.

The obtained spatial strain distribution was involved in
the calculation of the hole energy spectrum and energies of
excitonic transitions of Ge QDs.

3. Hole energy spectrum

The energy spectrum was obtained by means of the sp3 TB
approach, including interactions between nearest neighbours
only [15, 16]. Following the work of Chadi [17], spin–
orbit interactions were added to the Hamiltonian. Strain
effects are incorporated into the Hamiltonian in two ways:
as changes of interatomic matrix elements and as the strain-
induced mixing of orbitals centred on the same atom. The
changes of interatomic matrix elements due to strain are treated
by the generalization of Harrison’s d−2 law [18],

i jk(d) = i jk(d0)

(

d0

d

)ni jk

,

for bond length d and by the Slater and Koster formulae [15]
for bond angles. There i jk are two-centre integrals,
d0 is the unstrained bond length and ni jk are orbital-
dependent exponents reflecting the localization of the atomic
wavefunctions near the nuclei. For description of the strain
influence on mixing of p orbitals we include in the TB
Hamiltonian the matrix elements between p orbitals belonging
to the same atom:

〈px |Ĥ |py〉 = −βεxy, 〈px |Ĥ |pz〉 = −βεxz,

〈py |Ĥ |pz〉 = −βεyz,
(1)

Table 1. TB parameters for Si and Ge. Es and Ep are on-site
Hamiltonian matrix elements, ssσ . . . ppπ are two-centre integrals
[15], 1 is the spin–orbit coupling energy, nssσ . . . nppπ are
orbital-dependent exponents reflecting the localization of the atomic
wavefunctions near the nuclei [18] and β is the parameter that
appears in equation (1).

Parameter Si Ge

Es (eV) −0.51 −3.32 + 0.55
Ep (eV) 0.70 0.89 + 0.55
ssσ (eV) −1.03 −1.03
spσ (eV) 3.01 3.00
ppσ (eV) 1.755 2.42
ppπ (eV) −0.61 −0.84
1 (eV) 0.04 0.29
nssσ 2.00 2.00
nspσ 2.00 2.00
nppσ 2.00 1.78
nppπ 1.37 2.00
β (eV) 5.63 5.89

where ε is the strain tensor and β is the model parameter.
The mixing of orbitals introduced by equation (1) allows

us to fit the value of shear deformation potential d . Another
deformation potential, b, can be varied in a similar way by
taking into account the influence of diagonal strain components
on energies of orbitals [18]. We however do not include this
effect in our model, because it is not necessary for reproducing
the correct value of the deformation potential b.

Values of parameters are presented in table 1. They are
chosen to fit values of heavy-hole and light-hole effective
masses and VB deformation potentials. We include in Es and
Ep the VB offset between non-strained Si and Ge, which is
equal to 0.55 eV. All parameters for Si–Ge bonds are taken as
arithmetic means between Si and Ge parameters.

Finding eigenvalues of the Hamiltonian Ĥ is performed
by a method analogous to that of Pedersen and Chang [19].
These authors solved the equation

∂

∂τ
|ψ(τ)〉 = −Ĥ |ψ(τ)〉,

where τ is imaginary time parameter: τ = it . When τ → ∞

the solution |ψ(τ)〉 will relax towards the lowest-energy state.
Because we are interested in energy values within the bandgap,
we have modified the method following the idea of Wang and
Zunger [20]. We fixed the reference energy value Eref lying in
the bandgap, then we solved the equation

∂

∂τ
|ψ(τ)〉 = −(Ĥ − Eref)

2|ψ(τ)〉. (2)

In the limit τ → ∞ the equation (2) gives an eigenstate
of Ĥ corresponding to an energy level nearest to Eref .
Then the value of energy E can be found as E =

〈ψ(τ)|Ĥ |ψ(τ)〉/〈ψ(τ)|ψ(τ)〉|τ→∞.
The geometry and symmetry of problem in itself provides

some conclusions about energy spectrum. The geometry of the
island results in a strong difference between the values of size
quantization energy in the plane of the pyramidal base and in
the growth direction. The difference between ground state and
some number of excited states therefore has to be determined
only by quantization in the base plane. The degeneracy of
energy levels is defined by twofold representations of the
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Figure 1. Energy spectrum of holes in the pyramidal Ge/Si QD as a
function of pyramid base size. The energy is counted from the VB
edge in bulk Si. The ground state (upper curve) and nine excited
states are shown. Characters s and p indicate s-like (ground) and
p-like states, correspondingly.

symmetry group C2v, therefore all the levels are twofold
degenerate. The symmetry of the problem is similar to a
disc symmetry, that allows us to make the assumption that
the ground state will be s-like and the next two states will be
p-like.

Calculated energies of the ground state and the next nine
excited states of the hole spectrum are presented in figure 1 as
a function of island size. Separations between levels remain
practically unchangeable for all sizes in the region 8–15 nm.
The found wavefunctions are characterized by absence of
nodal surfaces perpendicular to the growth direction. From
the distribution of charge density (figure 2) we conclude that
the ground state has an s-like wavefunction, and the first two
excited states have p-like wavefunctions oriented along [110]
and [1̄10]. The next excited states have more complicated
wavefunction structure. The splitting between two p-like states
is about 7 meV, and it is caused by two factors: spin–orbit
interaction and nonequivalence of directions [110] and [1̄10]
in the case of an atomically sharp Ge/Si(100) interface. To
separate contributions of these effects to the splitting of the p-
levels, we solved the problem with a diffused interface on the
base of the pyramid, in which the last monolayer of Si under
the Ge island contains 33% Ge, and the first Ge monolayer in
the base of the island contains 33% Si. In the case of a diffused
Ge/Si interface, p-like states have no preferred orientation, and
splitting between them decreases until∼3 meV. This remaining
splitting arises from the spin–orbit interaction.

The absence of nodal surfaces perpendicular to the growth
direction is clear evidence that the difference between all the
found states is determined only by quantization in the plane
of pyramid base. Therefore optical transitions between these
states must be stimulated by irradiation polarized in the base
plane, that agrees with experimental results [21, 22]. The
weak size dependence of separations between levels allow to
conclude that optical transition lines in the QD array will be
well resolved even if there is a dispersion of QD sizes within
the investigated range of size.

4. g-factor of holes

Based on the TB approach we developed a method for
calculation of the g-factor of localized states. This method

� �

� �

� �

Figure 2. Probability density isosurfaces of (a), (b) ground state,
(c), (d) first excited state and (e), (f ) second excited state of a hole in
the Ge/Si QD. Left part (a), (c), (e) is related to the case of sharp
interfaces, right part (b), (d), (f ) is related to the case of a diffuse
interface on the base of the pyramid. Projections on the plane
perpendicular to the growth direction are shown. Edges of the
pyramidal Ge island are denoted by squares.

is applicable when the size of the wavefunction is comparable
to the interatomic distance.

External magnetic field removes the twofold Kramers
degeneration of localized states in the QD. Generally, in small
fields this splitting can be written as 1E = µBgH , where
µB is the Bohr magneton, H is the magnetic field and g is
an effective g-factor of the state. In the case when 1E is
small in comparison with size quantization energies, the g-
factor depends only on the magnetic field direction, and can
be evaluated by means of the first-order perturbation theory:

|g| = 2(〈ψ |n(L̂ + σ̂)|ψ〉2 + |〈ψ |n(L̂ + σ̂)|ϕ〉|2)1/2. (3)

There {|ψ〉, |ϕ〉} is the Kramers doublet of states of some
energy level; n is the unit vector in the magnetic field direction;
L̂ is the orbital angular momentum operator and σ̂ is the vector
of Pauli matrices.

Vectors |ψ〉, |ϕ〉 can be obtained as linear combinations of
atomic orbitals by solving the eigenvalue problem, as described
above. Thus, to calculate matrix elements contributing to (3),
one has to determine how the operator L̂ acts on atomic orbitals.
In other words, one should find the expression for L̂ in the
representation of atomic orbitals.
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The angular momentum depends on the choice of the
origin of the coordinate system. Let L̂(X0, Y 0, Z0) be an
orbital angular momentum operator in a coordinate system
with origin at the R0 = (X0, Y 0, Z0) point. Then,

L̂α ≡ L̂α(0, 0, 0) = L̂α(X
0, Y 0, Z0) +

1

h̄
eαβγ R0

β p̂γ , (4)

where p̂ is the momentum operator, eαβγ is the unit
antisymmetric tensor; indicesα, β, γ run over the set {x, y, z}.

Let |a, b〉 denotes an orbital, where a is the number of the
atom on which this orbital is centred and b is the type of orbital;
b takes values from the set {s, px , py, pz}. We introduce two
operators: the operator R̂ = (X̂ , Ŷ , Ẑ), which acts on atomic
orbitals as

R̂|a, b〉 = Ra|a, b〉,

where Ra = (Xa, Ya, Za) denotes the position of atom a, and
the operator L̂(0), which acts according to the rule

L̂(0)|a, b〉 = L̂(Xa, Ya, Za)|a, b〉.

We can now rewrite equation (4), assuming that R0 = Ra , in
the form of

L̂α = L̂ (0)α +
1

h̄
eαβγ p̂γ R̂β . (5)

The result of the action of operator L̂(0) on the orbital |a, b〉

depends only on the orbital type, not on the position of atom a.
Neglecting the distortion of orbitals caused by the interaction
with neighbouring atoms, we have for any atom a

L̂(0)|a, s〉 = 0, (6a)

L̂ (0)α |a, pβ〉 = ieαβγ |a, pγ 〉. (6b)

The momentum operator p̂ can be expressed through the
co-ordinate operator r̂ by the formula

p̂ =
im

h̄
(Ĥ0r̂ − r̂Ĥ0), (7)

where m is the mass of the free electron and Ĥ0 = Ĥ − Ĥso

is the full Hamiltonian Ĥ minus the term Ĥso responsible
for the spin–orbit interaction. Equation (7) can be deduced
from the expression Ĥ0 = p̂2/2m + U (r) or from the time
differentiation rule for operators [23]. Further we assume
that the operator r̂ can replace the operator R̂ in equation (7),
since the difference r̂ − R̂ does not exceed the atomic radius.
Making this replacement and substituting equation (7) into
equation (5), one can find the compact form for the orbital
angular momentum operator:

L̂α = L̂(0)α +
im

h̄2 eαβγ R̂β Ĥ0 R̂γ . (8)

For example, for the z-component this gives

L̂ z = L̂(0)z +
im

h̄2 (X̂ Ĥ0Ŷ − Ŷ Ĥ0 X̂).

So, if one knows the Hamiltonian Ĥ and its eigenvalues
|ψ〉 and |ϕ〉 in terms of atomic orbitals, then one can calculate
the g-factor using equations (3), (8) and (6).
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Figure 3. Dependence of g-factor principal values of ground hole
state in the Ge/Si QD on the dot size. The inset shows the principal
directions of the g-tensor.

In the frame of the developed approach, we calculated
the g-factor for the ground hole state in the Ge/Si QD. We
found the principal values of g-tensor for directions [001] (the
growth direction), [110] and [1̄10], and in the case of the QD
with 15 nm size these values are |g1| = 2.81, |g2| = 0.59
and |g3| = 0.26, correspondingly. When the size of dot is
decreased to 9 nm, the main values |g1|, |g2| and |g3| are
increased to 3.32, 0.81 and 0.59, correspondingly (figure 3).

5. Energetic structure of excitons and excitonic
complexes

To obtain the binding energy of the excitonic complexes
consisting of various numbers of electrons and holes captured
on the Ge/Si QD, we developed a mathematical model of the
excitonic complex based on the effective-mass approximation.
The realistic geometry of the Ge island is included in the
model. The length of the pyramid base is assumed to be equal
to 15 nm. Since we consider only the ground state of the
excitonic complex, we restrict the model by consideration of
only the lowest minimum of the conduction band (CB) and
the highest VB maximum. From the strain distribution [13]
and deformation potential values [24] it was found that two
1 valleys, oriented along the growth direction, offer the
lowest CB minimum in Si. The heavy-hole branch produced
the highest VB maximum in the Ge island. The confining
potential for electrons and holes consists of the band offset
between unstrained Si and Ge and strain-induced modification
of conduction and valence bands. We use the band offset values
of 0.34 eV for the 1 minimum of the CB and 0.61 eV for
the VB. Values of deformation potentials are taken from [15].
Effective masses of both electrons and holes are taken to be
anisotropic, and is assumed for simplicity that masses are co-
ordinate independent. Let mz and mxy be effective masses
in the growth direction and in the plane orthogonal to it,
correspondingly. We use values of longitudinal and transversal
effective masses of the 1 minimum in Si as mz and mxy ,
correspondingly; so mz = 0.92m0 and mxy = 0.19m0 for
the CB. In the VB, we use values mz = 0.2m0 (the heavy-
hole mass in Ge in the 〈001〉 directions) and mxy = 0.39m0.
The value of mxy for the VB is taken so as to make the
value of averaged effective mass mav = m2/3

xy m1/3
z coincide

with the averaged heavy-hole mass in Ge. The interaction
between charged particles is taken in the form of the Coulomb
potential U (ri , r j ) = qi q j/4πεε0|ri − r j |. We assume the
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value ε = 11.9 (the dielectric constant of Si) for electron–
electron and electron–hole interactions, and the value ε = 16
(the dielectric constant of Ge) for hole–hole interactions.

To solve the many-particle problem, the Hartree
approximation is used; i.e., a separable exciton wavefunction is
assumed and the single electron and hole states are determined
self-consistently. The set of Schrödinger equations was solved
by the finite-difference method using the grid with period ofQ.1

0.543 nm (the lattice constant of Si) containing 50 × 50 × 60
nodes. To reduce an error that arises from the finite size of
the grid, the calculation was performed twice with different
boundary conditions applied: once with Dirichlet boundary
conditions (ψ |boundary = 0), that gives an upper estimate
for energy levels, and with Neumann boundary conditions
(∂ψ/∂n|boundary = 0), that gives a lower estimate. The
arithmetic mean of the two estimates is taken as a final result.
According to the Pauli principle, filling of each VB level with
only two holes and of each CB level with only four electrons
was permitted. Four electrons can occupy the same CB level,
because there are two equivalent1 valleys and two equivalent
spin states.

Energies of interband optical transitions corresponding
to adding an exciton to the Ge/Si QD was calculated. We
denote the energy of transition from the empty dot state to the
state with one electron and one hole in the QD as E0e0h→1e1h,
and so on. Calculated values are E0e0h→1e1h = 629.6 meV,
E0e1h→1e2h = 639.3 meV, E1e1h→2e2h = 639.8 meV. Therefore
one excess hole in the dot causes an increase of the excitonic
transition energy by 9.7 meV. This blueshift of the excitonic
line is a consequence of the spatial separation of electrons
and holes, which is a characteristic of type-II QDs. Indeed,
neglecting for simplicity the perturbation of electron and hole
wavefunctions by the second hole in the dot, we have

E0e1h→1e2h = E0e0h→1e1h + Veh + Vhh,

where Veh and Vhh are electron–hole and hole–hole interaction
energies. Since the mean distance between electron and hole
is larger than between two holes, then |Veh| < |Vhh|. Therefore
E0e1h→1e2h > E0e0h→1e1h.

We found that in the case of an exciton consisting of
one electron and one hole, the hole is located in the centre
of the pyramidal Ge island, and the electron is confined in
the Si vicinity of the island apex [25, 26]. This location of
the electron is due to, firstly, inhomogeneous strain which
forms the confining potential for electrons near the apex of
the pyramid and, secondly, the Coulomb attraction to the hole.
When a new electron is added to the QD, it is found to be
spatially separated from the first one and located under the base
of the pyramid symmetrically to the first electron [26, 27]. At
further filling of the dot the third electron added to the apex
well, the fourth to the based well and so on.

The energy of excitonic transition in the QD already
containing an exciton, E1e1h→2e2h, is larger by 10.2 meV as
compared with E0e0h→1e1h, the excitonic transition energy in
the empty QD. This follows from the fact that the second
electron in the excitonic complex is localized in a shallower
potential well than the first one.

The results of calculations have been verified experimen-
tally [25, 26]. In the experiment, interband absorption in the
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Figure 4. Binding energy of electron trapped by the Ge/Si QD, as a
function of numbers of electrons (Ne) and holes (Nh) bound on the
dot. The upper curve was calculated for a neutral QD (Nh = Ne) and
the bottom curve for a negatively single-charged QD (Nh = Ne − 1).

QD array was studied by electron-filling modulation spec-
troscopy. The p+–p–n+ structure with a QD array embedded
into the p layer was used. The number of holes in the QDs can
be tuned by an external applied bias. To create excitons local-
ized on QDs, interband optical pumping was used. Shifts of
the excitonic transition line, caused by changing population of
holes or excitons in the QDs, are found in satisfying agreement
with calculation results.

We also have calculated the electron binding energy, i.e.
the energy needed to move an electron to infinity, in the
excitonic complex containing different numbers of electrons
(Ne) and holes (Nh). Calculations show that, for Nh < 8, QD
can keep Nh+1 electrons. A shallow bound electron state exists
even when no holes are in the dot (Nh = 0, Ne = 1). This
is due to nonuniform strain of the silicon matrix. Addition of
one electron and one hole to the QD gives rise to an increase of
binding energy, because in this case (Nh = 1, Ne = 2) the extra
electron and hole form a dipole which creates an additional
attractive potential. When Nh increases, the binding energy of
the Nh + 1th electron increases up to Nh = 2, and then slightly
decreases (figure 4). For Nh = 8, the ninth electron cannot
be captured by the QD, since each electronic potential well
(above and below the Ge island) has one fourfold degenerate
quantum level, and both these levels are fully occupied by
eight electrons. In the case when Ne = Nh (the upper curve in
figure 4) potential wells for electrons are deeper than for the
case Ne = Nh +1 (the lower curve), therefore the dot with nine
holes can trap the ninth electron.

The dependence of electron binding energy on the number
of electrons and holes provides an explanation for the negative
photoconductivity observed recently in the n-type Ge/Si QD
structure [28, 29]. QDs serve as traps for free electrons.
When electron–hole pairs are photogenerated, nonequilibrum
holes and electrons are captured by QDs. As a result, the
depth of traps for electrons (or the electron binding energy)
increased with increasing number of electrons and holes
(figure 4, lower curve) and therefore additional equilibrium
electrons are trapped. Thus the concentration of free electrons
decreases with illumination, and conductivity falls. The
negative photoeffect is one of the effects characteristic only
for type-II QDs.

6. Summary

In this work we have touched on four subjects of QD studies:
(1) strain distribution; (2) energy spectrum; (3) g-factor; (4)
excitonic properties.
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First, we developed a new approach for calculation of
strain distribution in QDs and their environment using the
Keating atomic potential and Green function technique. This
approach was applied to the pyramid-shaped Ge/Si QD.

Second, the hole discrete spectrum in Ge/Si QD were
studied by the TB method. Energy levels, its dependence
on dot size and wavefunction density distributions were
obtained. Distances between levels were found to be
practically unchangeable for all sizes in the region 8–15 nm.
We concluded that the optical transitions between localized
states must be stimulated by irradiation polarized in the base
plane. This was in agreement with experimental results.

Third, we proposed a method for calculation of the Landé
factor for localized states in QDs. Values of g-factor for the
ground state in Ge/Si dots had been found. The principal values
of g-tensor for the case of a QD with 15 nm size are |g1| = 2.81,
|g2| = 0.59 and |g3| = 0.26, and they increase with decreasing
QD size.

Fourth, the model of spatially indirect excitons and ex-
citonic complexes, localized on the Ge QD, was formulated.
We calculated the binding energy and optical transition energy
for excitonic complexes for different numbers of electrons and
holes. Calculations shown that, for number of holes Nh < 8,
the QD can keep Nh+1 electrons. When Nh increases, the bind-
ing energy of the Nh +1th electron increases up to Nh = 2, and
then slightly decreases. The obtained results allow us to un-
derstand the negative photoconductivity observed recently in
the n-type Ge/Si QD structure. Also, the spatial structure was
determined for single and double excitons on the Ge/Si QD.
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